|

 函数<img class="kfformula" src="" data-latex="f(x)=xsin\frac {1} {x}">在点x=0 处( )。
A:有定义且有极限
B:无定义但有极限
C:有定义但无极限
D:无定义且无极限
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 1}({3x}^{2}-2x-1)}=(\, \, \, \, \, \, \, \, )">
A:0
B:1
C:2
D:3
<img class="kfformula" src="%2Bd2funO9855zvnDP3vQPkzREYFIEDBrXLzXIE5OR2EgyLgJN72KV1w5zczoFhEXByD7u0bpiT2zkwLAJO7mGX1g1zcjsHhkXAyT3s0rphTm7nwLAI9EruayTdIulzSXdL%2Bm7YFXDDmiHQI7kvlvSkpGMlPSHpi0D0ZiD4wGMi0CO58dbvSnooeG6Ijhf35ggkIdAbufHWn0k6LhA7yRh/2BGIEeiN3Hhr9PbBvkyOQCkCvZGbgyOyBN3tzREoQqAnch8p6VtJ94QMSZFh3rkJAqdIOlfSnYmj3yvpDUkfJvYrerwnciNHyI6cGQ6URYYt0PlmSWeEKIOcunWBd675Coh9m6RLMiZhfR9YkuA9kZusyNWSDpH0awaAS3d5MVroP6XhP/x4RtJrkp7PBPoySedLujKzf3K3nshthRrkyX5oMaFTyY3Xv1zSCZK%2BkXR05wZfF4iZ47Vj03AIbJDHl7C3F3Kb3n4vhPolbK/1DoiKLMnB8mtJX2aG%2BlrznzMOpHyhwGvbO/Dely5lb86CzAEj9RnT2/vtMMliPZdJbHToB5LuyzigpeJb8jzzfKpidGFDIz%2BbHy57Ibfp7WtD6b1kMZbqC7GpnJ4oCe/9cOKLzeMjT3J1bOIrsx5nnsdX1Mpo908z8EqefC/kJrd9TIeVSRbiZ0mHhgW5SdIrITOCzo5bKpaMfUWm109e6IIOtclYe7PsaVrqghRgtGdXqpG/hN/2MB%2BbKIuK5HhdkhGZ/C452xrzJDyT1z%2BnBagVx/xY0qMVD4EcTm8IEa/iNP87VI1FKp0gueJ3wu0/7pb00h6MctdGblJZB2XICLzVBSEzcmDYNGQNtulttO5VAYyjJL0aQjljHRYyLW%2BHMVpilpoJmjOXFmP%2B5709kJv72neFQwsHy96aaeNnM3UnEeDwyEND2vsDObfpbTIUVvQ4L6TQ0PhfhWjypqSzK0WRbZi3IGKLMbsk90uSLuq47A7JuOuSc/C7I8iYUyfZgV16%2BxFJLwcS26JBiHiDIWs%2Bmmw4O%2BTmOAjOEkSSaWtBxBZjdkluijdHJJbdS0M2nhCy0v6QhFSYVt/w2HhJfk6zKAdhN5FgCq6l%2BjZ5fHQsjUzLpga5b4x%2BYSnHnA2WQ/S4TwsithizO3LHh8mUsntJyIacHGrIfHBYtAbhYrKxAFQPaRRaSF/Rfp%2BZxuLgybs2EZKxOaTFBN5GQhtrDRnZgogtxuyO3HaY/F7S3LJ7bsjGeJMJmwg3JXepx2M8yutTQrKxHpN0fUIGAn1NWyOzUrvoYmeOvaJWKe7/9l/DE8STt8Mk%2BnLuHe7ckG2Hsk0yoUVZGO/0yQbpwfxJhaVgz1ikIefIoWrkCAOxsUiJ1roPwubGuTTfqCkA1waN8awyyXVR7mfktLkh20gVe22AxruSamOj1SwJ7yU9Yr095360eXrSkLGMmm5ysGtxoOQ9FLJS73DvtZasF0WxuZIshxN/91mb3FaZLLnDPTdkm0xA61rDs/4wIU02mJOOhPO3Joto0cP0NofWHyd5czIpJ0V3OTZlVhjn5IqE22Zz7ahW6xLWznVam9xWHCmZx9yQzXOQrXk4DKij7y%2BMZIl5aX5u5Ia40/vNsZyhz2khnWieu%2BSjgZ2E2OMBNmqta7k1x9pqTwmpcoGyfvale8k115SQnZqhKLWP/oR0QjBh3UI7npDDJJkYKozTS1OQ/6yg13kGrRtXOBn36coSapet2EHKtlTzYxuJg%2BaSZG1ZYtdcuU039%2B%2BSlIRs5MtvW%2B4SW1471rW7Fv3/8vtaGQ6k4e1Lbcw1PbdlSvi6gyrlnFYSss3LT6uFVtAp%2BYRqztz3%2BzN2pyX3YMlB8qeZNYIqWK1Jbv6q1OmJ30yWhuxpeAdEwu37S3mTKqu23iDIk01SateMkGJIrUXkiE1mTXJDKj4E7ukm4K5F8t//c45IJWlOn2Ks1yK3ld35fKnHm4DFwPoA6yOwFrmt7L6fPitbf7V8BkkIrEVuO0ymXJZKMswfdgTWIjeHSaSJ623nYDME1iI3Kb2S%2ByTNAPGBx0FgKXJz4480HBobb839Apck4/CoS0uWIjcamyokB0lu/yFL%2BJk3R6AZAkuRm/sEkJo/ZcB/TcCT74c/dtkMeB%2B4PQJLkdssQZJwzdWbI9AcgaXJ3dwgf4EjYAg4uZ0LwyLg5B52ad0wJ7dzYFgEnNzDLq0b5uR2DgyLgJN72KV1w5zczoFhEXByD7u0bpiT2zkwLAJ/AVwUYEzHcIz3AAAAAElFTkSuQmCC" data-latex="\int {x{e}^{{x}^{2}}}dx=(\, \, )">
A:<img class="kfformula" src="" data-latex="\frac {1} {2}{e}^{{x}^{2}}">
B:<img class="kfformula" src="" data-latex="{e}^{{x}^{2}}+c">
C:<img class="kfformula" src="" data-latex="\frac {1} {2}{e}^{x}+c">
D:<img class="kfformula" src="" data-latex="\frac {1} {2}{e}^{{x}^{2}}+c">
<img class="kfformula" src="" data-latex="y={x}^{2}sinx的奇偶性">
A:奇函数
B:偶函数
C:非奇非偶函数<br>
D:既是奇函数又是偶函数
求积分<img class="kfformula" src="" data-latex="\int {lnxdx=(\, \, \, \, )}">
A:xlnx-x
B:xlnx+c
C:xlnx-x+c
D:-x+c
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {sin3x} {x}}=(\, \, )">
A:0
B:<img class="kfformula" src="" data-latex="\frac {1} {3}">
C:1
D:3
<img class="kfformula" src="" data-latex="\int ^{1}_{-1} {({x}^{3}cosx+x)dx}">=( )
A:-2
B:0
C:2
D:4
在区间(a,b)内,如果<img class="kfformula" src="%2BWoSKbEm1m13KtVsQgsp3NIiEBNEpVIiaflvyJDObyc3cO2f%2B987/njv33EZe771nzpznNzPnzMy7AnssAgojsKLQJ3PJIgAD0yBQGQEDU6Us5pSBaQyojICBqVIWc8rANAZURsDAVCmLOWVgGgMqI2BgqpTFnDIwjQGVETAwVcpiTk0FzB%2BAnVJFcK02LlMA8yCA2x1gbgewB8DFnvPMJQBPAbzuaWdZn1cdlymAeRPARwCXI4oTynMAfh2ABm/rj4nAWXVcpgDmnwDOtoBHcR4DuDMAmDTBWWgfgCMD2Stppuq4aALzbwCrAXwH8LVlhgyFPu4gGmK2DO3ec7D/W5KqgrariIsWMJnfcbZaD4Bg7BcUO3zv7oCzpWeFfhwYKD0oyF%2Br6SriogVMVpfXAJwC8BnAhwQYzAevO5BLiE8fjk0k1wz7X01cNIDpq8szAK4IKTsNYFPBXJC56/sMf4RuF3%2BtmrhoAJPL%2BAWXLz4RSlcanNICC7uZ/Vo1cdEApjSnDFV665b%2BUgUKC4iTALZkozHuB9XERQOYDCafHAgkJx7Mt4462%2BsAPHJLM2fDNQA2A3jRUf1L2iiFod%2B2ov3/3E4FN/9TBwkSnycRl7HA3AvgN6cqAeHzzv37l6DSlgjAmdhvlrM97ncyj/0EgCnDMwC7Oqp/SRslwGRawxk7LL748z%2BusS7NJD5PIi5jgRluzfC4kceJsZOdNuFTAnBP9IED0NvgN7eCgomV95uOAqqtDc5mBHyR52Gin5zNOTAPRQYn/bmf2K0YMy6LxKP1m7HB5OzA4icmRFdHJQJw66k5AHLaSbUxqBAAuMS%2BaoHP/y41gFM%2Bc8BOIi5jg8kq8rBgM70JQUqA5vu%2B8s/pb24bfUH1Psa2zbpm0rDdXJ/VxiVHqL6Bj32/SOFDO7kb4Mwn%2BewWdoIz1O%2BZBZnQdOtrjAXz7Zgm0gFcTVzGBrOZ90nFJWjMTaXbRWwntQyGbbPY4LIvBVnqdyo9YQEY252g/88F/lQTlzHB9Cc%2BOcB4YZkr8bKH5A6mr2h5ayjcwG/mWyE0XOJ4oSTMx8J8tUTxEx7Lhr74HQUWh6n%2BjhmXIQbn/zbGBHPRwofOd1204LK3NThHjy2DFHtbh9ClLkJ0icdlmLNiczB4/08IVohq4jImmNK8qU1MCsnbSLHCyC%2BJzBV3uMrfz5iSy8VttgedFRrG/P5l2CdfnPBVqVZVxEXa2RKCLFr4hMt57N4mBd7pNuy/uFmGVe0vAPgznxsdN4f4/dqWZbxEHEKb4Z1U/j9PpphLt%2BWeMX9oY/JxGRPMtpxKKn6pypkD5rySK28%2BD/dXAiWxqSIuY4HpA56z4R0TxZ97p4oCiaB8h0vnN0XX3XLyy7CPk4/LMsFkQbHR5YUEgOfUORc32uDi0sUlr%2B/f/XCwMAWIVeJSsBd9r1mw0Y6vxpl%2BxHLpVFuTjssywQz34pigc5brC1OYb/YFqmv7KAVB3983z8EJ5VVntM9N%2BiH6NISN7PgsE0xfVHB/8KWi5TI7aAU%2B8LGh6VUANrg/L%2Bkq0gq4ocfkMsHU02vzRH0EDEz1Es3TQQNznrqr77WBqV6ieTpoYM5Td/W9NjDVSzRPBw3MeequvtcGpnqJ5umggTlP3dX32sBUL9E8HfwJoHFBQMBkVwcAAAAASUVORK5CYII=" data-latex="{f}^{'}(x)={g}^{'}(x)">则一定有_________
A:f(x)=g(x)
B:f(x)=g(x)+c
C:<img class="kfformula" src="" data-latex="{[\int {f(x)dx}]}^{'}={[\int {g(x)dx}]}^{'}">
D:<img class="kfformula" src="" data-latex="\int {f(x)dx=\int {g(x)dx}}">
极限<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {{x}^{2}sin\frac {1} {x}} {sinx}}=">_____________
A:1
B:2
C:0
D:不存在
函数<img class="kfformula" src="" data-latex="y=\sqrt {4-x}+sin\sqrt {x}">的定义域是
A:<img class="kfformula" src="" data-latex="0<x\leq 4">
B:<img class="kfformula" src="" data-latex="0\leq x\leq 4">
C: 0<x<4
D:<img class="kfformula" src="" data-latex="0\leq x<4">
设F(x)是f(x)的一个原函数,则等式( )成立。
A:<img class="kfformula" src="" data-latex="\frac {d} {dx}(\int {f(x)dx})=F(x)">
B:<img class="kfformula" src="" data-latex="\int {{F}^{'}}(x)dx=f(x)+c">
C:<img class="kfformula" src="" data-latex="\int {{F}^{'}}(x)dx=F(x)">
D:<img class="kfformula" src="" data-latex="\frac {d} {dx}(\int {f(x)dx})=f(x)">
<img alt="" src="http://file.open.com.cn/Lms/ItemDBAttachments/image/singleselect/shuxfxfs/20061001/41b0b9f8.JPG" />
A:A
B:B
C:C
D:D
当<img class="kfformula" src="" data-latex="x\to 1">时,1-x是比<img class="kfformula" src="" data-latex="1-{x}^{2}">( )
A:高阶无穷小
B:低阶无穷小
C:等价无穷小
D:同阶但不等价无穷小
若变量<img class="kfformula" src="%2BCAYAAAAxrhmWAAAEKklEQVR4Xu2bPasWMRCFz/0Bgo1gKfojFGzstdBOwcLC2o/WD7C5ln78AwtFrRTRXjvFRqxV7G0sFOyUkV1478tuMtmdzGb2noWLyOZNTs48STbZnR3wogPODuw4t8fm6AAIHSFwd4DQuVvOBgkdGXB3gNC5W84GCR0ZcHeA0LlbzgYJHRlwd4DQuVvOBgkdGXB3gNC5W84GCV2agasATgE4C%2BABgOtEZr4DhC7t4QsA57oifwG%2BNpyPHE3MebgJmjV0XwEcywlY433OdLqoyjIry6uFX6cB3AZw3Kg%2BXQ8aKmVhYkPdqSLlPICnhoDIkv3cuM4qHa9VKaFLOyvAXQNwAoDMdg8NA2G9XBtKq1vVfofuMYAfAA4B%2BAjgCoBXG7tUAWPzsvSL0NVlu8naBThZNt8A6OG6CWDXcClNdZzQNYlFXVH3B2a0MwAOAHimaFp%2BL0tv7rowUh%2Bhyzm34vv9zvQJgIuO/SR0jma31pTsJuWNw9iMVEsvoavlbMP1ygz3BcDrTmO/SbgB4K6DbkLnYHJrTUjQv3WiPne7V/nvb%2BOjke1%2Bv%2B92y0cBfOjA91zWF4%2BD5RHA4p2hgBgOELoYcVqVSkK3qnDG6AyhixGnVan0gE4%2BgpQ/XnEceAtA/qpcHtBVEc5K4zpA6JaL3UEAJwH8Wk7CYMvvaushdLUdHq9f3tseBvBnOQmDLd%2Bpradl6Fo7sbfWI8GtHuDaAE2pv1XorAM8xZuh31jqKoFuVVlpLUJnGdipsKWSZiz09bt57Q5xVVlphG4vlpqkGQvo5HlOEn2016qy0lqDziKg2kAOldMmzczVWbK0bupcRVYaoRtGNAdV7n4KfDkquVQ400l9pVlp8jWLJBSNXdoBNmcQD/42InS5ZBoLk3JQ5e6nNMgHo98BfCoQOiUrTatRW65AbrpoNOi8kmlygcjdT7k%2B9jyXGkxTstK0GrXl9i102mSa2kkzcwI19DxXYzBpNWrL7Vvo%2Bo7XTqbJBSJ3fyxAR7qPHx5tFdAOppLAazVqy5W0nSzb2vIqYjUm1E6mSWnQ6Ns0XWY2OR752W0g5GxOnumGrqmDSfI6JF83d8nn8dubi9L%2B5NrI3o8GnVcyjRV0slPtD4Jfdq%2B9Uq%2B%2BLAeTFiZtuSxM2gItQpea7cSgmsk0uaSZqQGSmU42EGPnczUGk1artpyWqWy5VqHTLrPZDhoWmBMcgU1mOnmmk3%2B3rxqDKac3N8AMrdtbVcvQVev0AhXLYbCkHN7rnu08JOSg89Aw2Aah87FeZrhbAC77NPe/Fa%2Bk8eIuEbpiyyb/QGa77aOSyZVF/iGhixy9oNoJXdDARZZN6CJHL6h2Qhc0cJFlE7rI0QuqndAFDVxk2YQucvSCaid0QQMXWTahixy9oNoJXdDARZZN6CJHL6h2Qhc0cJFl/wNXY9A/A9MeHAAAAABJRU5ErkJggg==" data-latex="\frac {{x}^{2}-1} {(x-1)\sqrt {{x}^{2}%2B1}}">为无穷小量,则x的变化趋势是_____________
A:<img class="kfformula" src="" data-latex="(x\to 0)">
B:<img class="kfformula" src="" data-latex="(x\to 1)">
C:<img class="kfformula" src="" data-latex="(x\to -1)">
D:<img class="kfformula" src="" data-latex="(x\to \infty )">
求<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {1-cosx} {{x}^{2}}}=(\, \, \, )">
A:0
B:1
C:2
D:<img class="kfformula" src="" data-latex="\frac {1} {2}">
题面见图片<img height="80" alt="" width="372" src="http://file.open.com.cn/ItemDB/11174/711b5348-87dd-40c6-9fec-4b6c3c8199d0/200949172527917.JPG" />
A:A
B:B
C:C
D:D
设<img class="kfformula" src="" data-latex="{e}^{x}">为f(x)的一个原函数,则<img class="kfformula" src="" data-latex="\int {xf(x)dx=}">
A:<img class="kfformula" src="" data-latex="{e}^{x}(x-1)+C">
B:<img class="kfformula" src="" data-latex="-{e}^{x}(x+1)+C">
C:<img class="kfformula" src="" data-latex="{e}^{x}(1-x)+C">
D:<img class="kfformula" src="" data-latex="{e}^{x}(x+1)+C">
<img class="kfformula" src="" data-latex="\int {\frac {{x}^{2}+1} {{x(x-1)}^{2}}}dx=(\, \, )\, ">
A:<img class="kfformula" src="" data-latex="ln\left | {x} \right |-\frac {2} {x-1}">
B:<img class="kfformula" src="" data-latex="ln\left | {x} \right |-\frac {2} {x-1}+c">
C:<img class="kfformula" src="" data-latex="-\frac {2} {x-1}+c">
D:<img class="kfformula" src="" data-latex="ln\left | {x} \right |+c">
<img class="kfformula" src="" data-latex="{({e}^{{-x}^{2}})}^{''}=">________
A:<img class="kfformula" src="" data-latex="{e}^{{-x}^{2}}">
B:<img class="kfformula" src="" data-latex="{-(2x)}^{2}{e}^{{-x}^{2}}">
C:<img class="kfformula" src="" data-latex="4{x}^{2}{e}^{{-x}^{2}}">
D:<img class="kfformula" src="" data-latex="(-2+4{x}^{2}){e}^{{-x}^{2}}">
函数<img class="kfformula" src="" data-latex="f(x)={x}^{3}-3x">的极小值为( )
A:0
B:1
C:-2
D:3
<img class="kfformula" src="" data-latex="y={x}^{2}+1">在[-1,1]上的最小值为( )
A:0
B:1
C:2
D:3
函数f(x)在点<img class="kfformula" src="" data-latex="x={x}_{0}">处连续是f(x)在<img class="kfformula" src="" data-latex="x={x}_{0}">处可导的( )
A:必要条件
B:充分条件
C:充分必要条件
D:既非充分条件又非必要条件
设<img class="kfformula" src="" data-latex="\int {f(x)dx=xlnx+c}">,则f(x)=( )
A:lnx+1
B:lnx
C:x
D:xlnx
极限<img class="kfformula" src="" data-latex="{^{lim}_{x\to \infty }\frac {ln(1+{e}^{x})} {x}}=">_________________
A:0
B:1
C:2
D:3
函数<img class="kfformula" src="" data-latex="y={x}^{2}-12x+8">在区间(-10,10)内满足()
A:单调上升
B:先单调下降再单调上升
C:先单调上升再单调下降
D:单调下降
<img class="kfformula" src="" data-latex="f(x)={x}^{3}-3x">单调递减区间为( )
A:<img class="kfformula" src="" data-latex="(-\infty ,+\infty )">
B:(-1,1)
C:<img class="kfformula" src="" data-latex="(1,+\infty )">
D:<img class="kfformula" src="" data-latex="(-\infty ,-1)">
<img alt="" src="http://file.open.com.cn/Lms/ItemDBAttachments/image/singleselect/shuxfxfs/20061001/7a04334b.JPG" />
A:A
B:B
C:C
D:D
设函数<img class="kfformula" src="%2BQxDGn39Ljdatk2hEXIIIGkFQIYTCJTqEipqKuFTiT0EIKvdo3BISRKV3q6lpyS85I2vtec/unj37nvOdOc13eXfnzDzz7OzszL6n5I8jsCMETu3IVjfVEZAT3kmwKwSc8LtytxvrhHcO7AoBJ/yu3O3GOuGdA7tCwAm/K3e7sU5458CuEHDC78rdbqwT3jmwKwSc8LtytxvrhHcO7AoBJ/x63H2VpBslPdVQpTclXSjpMknfS7q8oey5op6W9Kmkb%2BYKKpnvhC9Ba7mxkP1xSbc3fMXzkj6T9Mkg829Jb0m6p%2BE75ogym5/rSXon/ByXtZtLJP5Y0jvtRAqZIbkfkfSCtKoLg3dKurnnInTCN2RYpaj7B6e3jO6oQkR/VNKLgV78b20%2Bf29Y7K9V4lc0bW3GFyl/pMGkCedJuqDR%2B3H4u42jO6oR0UOy94zwpCuXSLpL0mlJh8hMlL%2BjcTo36honfDlrf5b0baNtGGK83nDxHLKG6E5K81i5yUUzCAi/SPpC0tuSHpggPMLB9L4eubwTvsiXzQcTdS9ttHgOKccB9txeUTRKoXIIz3njh2hHag42Ap3wi8CaLbSHo1lUkH3pyJ4yml0lh/C9Fr4TPpuaywz8LiPHnfPmmOzkyy0rQVO65RKeg/uDPfoEPSO8laDOHLavZyK0nhwi0UNTKDb%2B3PRC7F%2BSzkiUCCHORZLOkvRVYuslUttDKZDc/OFAHs0f8ueYbCVVE2TeO7zkfEkfDXqg29lDc4m82XC9aWg6hQdXMI5xbwznf8TlEp5JJVhU69yL8IB/qyTIzGp%2BNZFOYfD7nfNMyE7p7ongwBQ3gdD9yqEDmqp0QKIfhwYPNkAoFsYbgUwWxBWJw2mJk6nmWJMGnajbo/tPw7s5LF4f4Irs1NPL50binJTmxBH%2BlYAA/M72FQJvDqStHkcgI2XNqv5wIqJBEouUJp%2BWNyQ2/dDXdh1Id1ukO%2BPR22ygQhFXHFI2lziZ%2BR8EXVObG3ZOW1aParCek8OXYDFLt16r3UiBsinHQDDG0HWzVvgswzInW0QO768QxXksFTDdifxfJ9rzVu%2B26B83e5CVWiglTg4XHfMIApT8qHP3zMkzYf132G5TGkPAomC8zY0RohTg0vEcGrlYRVSmtv7lgZrx1KIkbbl7pPI1lq6VpDShbfEuVGp3ON4Wao2MqQC1e8KPOeoY%2BTsOtnydNMWeVFplOxM/xzqs7Fy/SrohYo5F45Tc2oYLqRhP/K4a0i45J5fw%2BOHZk1alAVgiKk94TfVQ/r6kM2LZ6PGSJCogcao3paOlO5w/4uu9FvmvTnQSIS6pSek9Eog0tjB7Yjb1rlzCU8ggPVt8AffK4Q0YAOBuRVh6tFRhLB9d4tBKTkxFI47WYxWkFGnDc4mlBSkbsPnzwJnhPPT4o/AOvOkYpxNxnj9Fxh6f5xIeTKhsLV6SXgPhj5G/xyQ057P4aPXHNxfjlAvSnRNUgMbyd0tn7MxitXRzbM7FqbikmXpXWDrtQeTcd%2BQSfqkLdP/TszfhSWmoG9s9bYvuYQTMBXPOuLCmbXJSNflwZzLSMo7fw%2B13Kn83nCHry1Fqw9xDNy8hjX1biQVzTVTRWuLLI3OwDefmEn4Kg1b6dL9aYKSC9HQ12c6t%2B9fyq21TAIVdSxuLLmNfOSNluXbQl/FhU4m/U3fPTa51Yekwp64Bk4r8dqBfAD7XDaSnmkS%2Bjz63DNWllD5T9i/5uXXMLx4qYLyLNJYnlbJ07bD3jvAx0FOlviUdsxbZ3SoUazE40oNdP%2Bx0L6pmT8KnDorHKkcuCmqFcLsP03OXq1Cz%2BRQOq7/3uBZsmvckfKpaQYRPleuaI7sBgQQELn%2BtuXPaEkbSW1K1xSszodI9CR9%2BqXgrrfGWDs6RtcbSYo7eNWOOYmtPwlsJ7s8BHRouPe/N1DjF55wwBHoS/oRB5%2BZsEQEn/Ba95jpXI%2BCEr4bOJ24RASf8Fr3mOlcj4ISvhs4nbhEBJ/wWveY6VyPghK%2BGziduEQEn/Ba95jpXI%2BCEr4bOJ24RASf8Fr3mOlcj4ISvhs4nbhGBfwCXaExBa0OE6QAAAABJRU5ErkJggg==" data-latex="y=sin({x}^{2}-1)">则dy=( )
A:<img class="kfformula" src="" data-latex="cox({x}^{2}-1)dx">
B:<img class="kfformula" src="" data-latex="-cos({x}^{2}-1)dx">
C:<img class="kfformula" src="" data-latex="2xcox({x}^{2}-1)dx">
D:<img class="kfformula" src="" data-latex="-2xcox({x}^{2}-1)dx">
<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }\frac {n+1} {2n-3}}=(\, )">
A:0
B:<img class="kfformula" src="" data-latex="\frac {1} {2}">
C:1
D:2
函数<img class="kfformula" src="%2BwvQxTHv7cWoaEW1KKRi4gIGvEIFUIohNIjVERJRdB6FIS4Ku9oEIUE0YgaUdNQqMmHmWRMdnceO7OP355tbv6/nTlzzvd8Z%2BbM2TP3jOwxBA6CwJmD2GlmGgIyshsJDoOAkf0wrjZDjezGgcMgYGQ/jKvNUCO7ceAwCBjZD%2BNqM9TIbhw4DAJG9sO42gw1shsHDoOAkf0wrh419G8p%2B%2BNiSdvNIWtk35xLqhX6VtJZSY9LeqVASgmBS9oWqLBMUyP7MjgvMco9kt4tWKW9TiUELmm7hM1FYxjZi%2BDadOO3Jd1nZB/30Z7Ifp2kWyQ904Byz0n6TNLXDWRtRQSr7geS7ipUqGS1LmlbqEb/5nshO0R/ssKRYwh6eS%2BeEOEhYhivPybpEvcbv58n6SJJ10i6OgAmJDC7w%2B%2Bu3feSHpX0kaQnXHsje/85KZzwiaRzDccixr1N0v0NZa4l6laHT7h4cWCF1PGKHxPW/w3GxPyfuj7Ywi7KLujlGtkbePhVt5qwqvwq6flA5kOOlKXbc45a7zuSvJHTeMNtXnIreEh2VnayMiFBhyaFf4%2BMcAXHXBaD84NFxsg%2BkwSsHKyyl0mCfHdGhyx%2Be6/xqu5VZty7G4ZHM6Go7v6zCz/C8ARhT0crc/w3bWICM0lelvTOwK5nZK920X8dAfA1SY9Iwmk/BuQjtn7TTYSZw4x2Z8wHdx67gyEhx19Rjp1QhsdPAmxlFwvbxQT2C869AwuMkX0GC31ueOxDCKvMVZ3jamJVDmMlH2JmmNylaxh3h2cQPwl8WDgWshD%2BgPVPLqxDSR8SsRvE/bsY0Vvo2tkYQhjAJDbkYBQ/SxBxiQnV24%2Bs2GRNvotW43glHmrn2/DvL05RdlcWAJ6pXaC3XU3lr032oRg9NJBtmBCn5wGSA/DDUTquKcgbF1YSmpS03ZzZa5M9jiljgHLBJbZ/wHW%2BVNLHLixh1b7Y1Yx8GWV5wrFyx9mcAxsoVGJ7SdsGqrUVsQbZSX8968ygcImH7ZeHLECYS88Flx3CfyDy6TXOAcSghEefS7pp4lN67jht0d%2BGtBLbS9puw7pAizXI7of3h1OyCGFevXTFJUf/YRTz45QwdUas%2Bs3EQXfMiejIpKl5iKHH7KqRZ31mIrAm2X3OdyjF5c3KWUkgO2nLeBJNyY1hyxlnJtS6UtIFc4WccP8/Jf3Q0741yZ5TpVdDQp/hKbGtZpxSv0D2C0s7Haj9H6dM9tThFD/XfPAhPue5OZMoHG5fOHA2JhOm/TcrWf1aWxvH1UPyIS7FSSWpx/hDSkpvUo%2BEPLmTIyWv1XsySTe48gkO7r5upZX8w8lZi%2Bw5h1OcQTxOcVhuDTvEfX3gI1Uc14eOJuyh9DWM%2B8P4f60DKhkmX/y2RJh18uRfi%2Bw5h1PATxVqEfdTn00RGc/QOYBU5LUTE6ZnodkcAoUEN7LPQdL1XYvsOYdTbx5xuydzbDIkIEdPoROx9/Wuys%2BXH%2BRc%2BpiS3wDi2SJ8FWILXzHxCdf8BY073AWNoVKN2YoPCMDvl7uPfN5vPcYZlNkCwBplcw6nXi4hSFzj7t%2BxQ9zoCE9dB7E95Lg9qPN4a6Kikf7c5hkKYWrsat2n9hL1mB6QLSwUGyr5bW2Dl0e9PGcwP7FyzmxNdVmL7Bjqy3pTBvXMljDpntpoea//oMWu5S9ipLBKvQf3uMK0VYjkb0blTrSWO1bK7n/fr0F2v1qVfPTxNS65B9Uc4zmY/rbh0l5IGD4tfBVPmpYre2rS9JxoOf5ejOwcAq9wsTcko04lvlWTUphwhmKuFvdQmXCEP2uGL6nLzSk85r6H6GSvuFQdxuy1eqXIHk%2B0k13ZAeILdzjiQMgKXUPaqRRiifNbySkZM2ybc7m5VnaqHxOdylAeLsaEd3vn6JUie6wX7Rf9ftBia0yBy3t/ECSf/dWGQ4ccW1q0ybncPDWOv2Cd0iUVKsaJgjl6lZCdcUgM9LhEP4rJUmRPOeWo76cuN/fAJDdmT%2BnlY/2UjkPpRf//2Sz%2BRdjInnJX3/dTl5t7jBwfEscOqDV65azsMdEJqWrC2SpsjOxVsM3ulHO5efYgAwLiPDthDKGl/2g3R68U2fmgxQel8GJ7eJm7h73/k2lk7w7x4AAQI3W5uYdm4S0x5IdE5%2B85eqXIHqdSvX2LcXCxgXp4zmRuCoEU2VdX1si%2BugtORoFFQ5Ia1IzsNahZn10iYGTfpdtM6RoEjOw1qFmfXSJgZN%2Bl20zpGgSM7DWoWZ9dImBk36XbTOkaBIzsNahZn10iYGTfpdtM6RoEjOw1qFmfXSJgZN%2Bl20zpGgSM7DWoWZ9dIvAPvp5wSawSNBsAAAAASUVORK5CYII=" data-latex="f(x)=\frac {ln\left | {x} \right |} {{x}^{2}-3x%2B2}">的所有无穷间断点为
A:<img class="kfformula" src="" data-latex="x=0">
B:<img class="kfformula" src="" data-latex="{x}_{1}=0,{x}_{2}=2" width="166" height="44" style="width: 166px; height: 44px;">
C:<img class="kfformula" src="" data-latex="{x}_{1}{=0,\, x}_{2}{=1,\, x}_{3}=2">
D:<img class="kfformula" src="" data-latex="{x}_{1}=2,\, {x}_{2}=1">
已知<img class="kfformula" src="" data-latex="f'(1)=2">,则<img class="kfformula" src="" data-latex="{^{lim}_{\Delta x\to 0}\frac {f(1+2\Delta x)-f(1)} {\Delta x}}">=( )
A:-2
B:0
C:2
D:4
已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )
A:[a,3a]
B:[a,2a]
C:[-a,4a]
D:[0,2a]
当______时,变量<img class="kfformula" src="" data-latex="\frac {sinx} {x}">是无穷小量。
A:<img class="kfformula" src="" data-latex="x\to 0">
B:<img class="kfformula" src="" data-latex="x\to 1">
C:<img class="kfformula" src="" data-latex="x\to \frac {\pi } {2}">
D:<img class="kfformula" src="" data-latex="x\to \infty ">
函数<img class="kfformula" src="" data-latex="y=arcsin\frac {x-1} {5}+\frac {1} {\sqrt {25-{x}^{2}}}">的定义域为( )
A:[-4,5]
B:[-4,5)
C:(-4,5)
D:[4,5)
<img alt="" src="http://file.open.com.cn/Lms/ItemDBAttachments/image/singleselect/shuxfxfs/20061012/5da114cf.JPG" />
A:A
B:B
C:C
D:D
<img class="kfformula" src="" data-latex="x\to 0">时,下列哪个变量为无穷小量( )
A:<img class="kfformula" src="" data-latex="\frac {1} {x}sinx">
B:<img class="kfformula" src="" data-latex="\frac {1} {x}cosx">
C:<img class="kfformula" src="" data-latex="xsin\frac {1} {x}">
D: 1-sinx
<img class="kfformula" src="%2BUxTGz78lSlsnqDQqsQQFGrGECiEUlqgsoaKmIpZKLAUhqOzRoCFBVCQ6W2erackv5shx3TvvzPvOnJnvm2eSr/jmnbn33Ofc557lnjsnTJcQEAKbQeDEZkaqgQoBIWAivCaBENgQAiL8hpStoQoBEV5zQAhsCAERfkPK1lCFgAivOSAENoSACL8hZWuoQkCE1xwQAhtCQITfkLI1VCEgwmsOCIENISDCb0jZGqoQyCb8F2Z2oZk9YGbPCH4hsGIELjWzq83s0ZlkfMzMPjSzz2Zqv9psNuFvNrPXzf5X0nu/mT1duZ%2BJhfoSAo4AZH/IzG6cERLv48lM0mcT/lUzu7VBbBaDN2YEWE0LgaEIME/fT5iPzPlrzey2oYId%2Blw24f8ys7dnXjkPxUTvbxuBOzsSzmndI8JvdYvLSxmwL0H4GL9fY2a3VKw%2BLv5ZXazP8yeb2almdnEXEsT/L8oASn1sBgEI%2BGaCdXdAsfI3ZRnBTMJDbtyk2CeuE%2B4Mlj/eJ7kHkUuPgP%2BJ9R/s0Crf28ysnGCgJI3%2BMLPHJ2jruDRBXP2ymZ2TPKDvzeyOjFg%2Bk/BPdRY79okl/7WSyOM%2BWfyS0PH/2gKSrKcj2x0T%2B1Mzey0zfjwCaDHvLlgAEwzfVxk7V5mEZxX7vbPcUfcMlqtMXDxiZlghl7HM5PM78Vb2anwE5u1OER1LbY/%2BF6o04hUaSltoMgmPdWZPEzcy7sFznzj%2B9OI%2Bbj2Xx%2BjEVmeG/1lASHSU7e2c7XrA%2BnZLtgwPc%2B6Fbl5l4oDhurtiDCeXIZvw9Odxuw/G3fTafRYIjzF9wYj/0x6hgsf0kwM0QYO%2B9UJTf5rZt2b2nZldUinqwKM5r1vE8Hhwve/t3uP9nxoxtz/nfZxkZs/1xIQtbysOd4zc7qW5pxblRpZzu9xLa9uV52/vOj/bzN7rFn8s32ldsdYnCfmGJXNCKX1nEp5J9q6ZfVlkQBkosSQFOR%2BEGdcXv/NYq70JODpZEx52xISM32Nil/kMFgIwYOxYGnYmXuzu4eHcUKlh8GKmu4JlqhWOuIdEm/TNhS64wD56XWPk5tmvg9wsyPTxSlhwWBDYYWmFX8jmBSiemyHccDw%2BMrMrEwqzUkjXmF0pfWcSfjIWHZGGPE4mXCktG8r92MyuCmPBunsZJ79zUZThiyAL3DfF9o2TPXpCvOclzDX9em4kLhAR0n3ldqL%2BUMk4P9%2B5rDV5%2BO2dymIfE4qM/fNKnofxszDsc2F8yh2KFNKJ8Puoa93veBa8VmTkJGWyxTptJ7wTrvy9NuKWa859FpR7Ki%2B1PAUe3Udu31HpSwT29Qnho5yOT22hnFvrIvzcCB/T9t2K1rLgEJvfWxPaE2rRutdg6uujD9aad%2BHPTyF3zYqPqbB0fJbwPkX4Y0rIuYfVF3PuikexzmV8X5N3Vzu1d1ohgD97qNw/FmEK7e7qs5QTGbhiuDO3vrz9tAKYYkB4Vk8ctyx9ltLW0A%2BWgoRYrey3z8KOKYgZkmkvsXDr2fIeDpW7Foa4x3LZwEqycjcmU58sNiQwU%2Braw8DYlsPjm32RW8JtylTgUn15lr2MoVEsWXcnBv9z%2BQQbUxDT6qNvzDULXiYL2R3YV%2B4hCcrYXymr41MuSGWc7%2B9NnbSjH4rD5joD39INmLCzUcu5TDqHRfhJ4fy3sVbSzAnnGfJyIo8piKGtXxploK3z3L4F6lWNvv/tE21qucstw7K/cruuNn6y/7WahTk0l3qQJQwg7cCOCD/HtPknKXd94dJ7cQrfA8C95aKoJpYUQ7haHFyT0q1h6Sp7wUyt8CZ6BbUPMEwtd/nBEzCIcsUQAnku78qp3cJnfIiixBYdZJdrp/V5lAnPquhFKWNo6yfxxryzz7NYb9w0XEQu32tm0p/RWeeSlBBgTH07IcB1Zsbet1%2Btajx%2B91jRn4/FMf7%2B1HL7QseR5vLYKQvMFV2%2BA5kIbcox1WTcRx9D32H8fRgObWfoc2DAUfDZ3XkEOsqEp6QWQo39WsiSWy9DJ4GeWw6BtIx5N0QM0MMDE5oHo5JNeFZ7LB5E5TjgfV257b618JB31351CdIQwnulmr9bfrTj2W4cP4e694OVoQZWg4DX8M%2BdvCNZ91vGsVhHNpPwkN3r5b10FEDjEdixGvdyzrK0tK%2BdXYQvEyheJea13XzEIy4yyHB%2BwsGOsdjo%2BcMQwLXnwM5c31kkv0E4k%2BLKL0H4eKot1oqfUoBaWtehahsa%2B%2B4iPDFVWWPtxTDIUvMoau8MlVvPrReB1nbgFBLP2XZTvkwL70L4XvMUX1uhLcIC/uJJO%2B/LS0V3KSgWybTI64tU60CKPhW1C2X9vjgCSxDeXeQpDkfMEcPXCO%2BhAwojm1xu28jCLz6VJcAQBDIJjzXmfDMxMJf3vS9Z5srSx/PdyOlkx5X3DznEU3Dp3xYfolg9IwRqCGQSHmvs%2B7%2Bc6yZLz7XvJ6qIq1uufJ%2B2d8XwvEuCkX1jPqnFjkLsx4tJvI9WzbxmnBBYHQKZhF/L4IcQfi2ySg4hMCkCWyT8viHEpMCrMSGwBAJbJPwSOKtPIbAKBET4VahBQgiBHARE%2BByc1YsQWAUCIvwq1CAhhEAOAiJ8Ds7qRQisAgERfhVqkBBCIAcBET4HZ/UiBFaBgAi/CjVICCGQg4AIn4OzehECq0BAhF%2BFGiSEEMhBQITPwVm9CIFVIPA39OnrRSjPhFIAAAAASUVORK5CYII=" data-latex="{^{lim}_{x\to %2B\infty }arctanx=(\, \, \, \, )}">
A:<img class="kfformula" src="" data-latex="\frac {\pi } {2}">
B:<img class="kfformula" src="" data-latex="-\frac {\pi } {2}">
C:不存在
D:0
函数<img class="kfformula" src="" data-latex="y=2{x}^{3}+7x+6">在定义域内
A:单调增加
B:单调减少
C:曲线上凸
D:曲线上凹
<img class="kfformula" src="%2BddJvuL//pk5e6%2B9Z83Mnpn9nYMeISAEhEAhAucK66maEBACQgAiEDmBEBACxQiIQIqhU0UhIAREIPIBISAEihEQgRRDp4pCQAiIQOQDQkAIFCMgAimGThWFgBAQgcgHhIAQKEZABFIMnSoKASEgApEPCAEhUIyACKQYOlUUAkJABGLvAz8CuN7%2BNcVveB/ADQBuAXAJwPnillTxzCEgArEz%2Bb0AXlw65qg4vwbgKwBfLDD8DeADAI/awaKWj4RAb8e%2BuHSopwG8MRmQtwG4B8ALiXJ/AuBjAB8Cw9454uzDJ4unALw%2BsLyJ0A9d7CUAXwL4ZmgpE4XrTSAPrXSo0R2X5PEsgAcScfWLcVTvjXOqmJQtJPOR5U3Va%2BRyzpdePQKJ9HZsjniPrHQokstHg1qecn9eKN/IHZLE7c8ERyfyUdyDOF27kC8J%2BDIAVwC4NTGGRF%2B/7whLxd4Ews70aeFIvpfzXFiMXTL7oMwjE0iIKWXlEuaZvcCe5L1cijPYHPpzjq25xOWg9O4kOkfF3INA/CkzA40PR2YlWwzPmEIu49fYyMUySmdHOU5VI2dtXQZUOaqWEmXt%2B2eq72Zuvm3pyySE1D7FWciDs%2BOdqmwL48YAdkG8sJNtMbw/Qlp3Tq5X36vchrWWsYVtHGFr5pGO5vMAGBB1fSj8O6UlbvE/NnMspCeBcITj7MN/Jx3310hgNcbw4XIgl/FTDBqWoRw3V65VRyeQkDxGjkWV2NCqDgc5Pu7cDMmAy5G/MnYYOYB%2Bm1HeSpfidnsSCAH%2BPRJkIoh8wrMHIaOHAT7%2Bn/EJy0NaLQxsQSA8u3F3sdX/r0gS5iEyP5BKXF9u0DabaCVnI3H%2BbaaVTLQrt/QdVs7OHChTZ3ItBqiW2GS31ZNAHOAhQ/N7xkGuChw5ZHjGIq6uZPxcgCjD24WBLtZlZP665YTnD5UzGV92t8TL1ScsT%2BxjTyu/aCVnrZ5W2Pk4cYD8bLF1aryMA%2BDjiTs3LTFo1lYrR0kRyDF0eHhp6/uQ4WsZP0VOv4zF7CFXhlj5ETvmLHKOht2oPpbkpz0JZI2h3fFp7q64I9UUPgQ2/LuE8ZNA8QqNatzROsEariPKOZpMaz7GWBRjhiUPZ0KtlqGb7%2B9JICVA7F1HBFJngdE6K7UZTaZRfSzJ8iKQbZhGNe5onUAzkKTuFi00qo8laSQCKScQHrrip8XzB4DvMhrKIZDLAdyU0fZWUUs5G4l4spkc7Fra%2BGcA/ISPCOSkyeYtsOdBH7frFEPP5e6I/e/PRlu8qVYbUc4RZYrhyYOKr2gXJtXV5ivHMwMM7o52XyFnFN0T9RHlHEkmbuPyCEPsTI%2BCqHt6bqN3v7UcfkvNAbL1Wh4augPA/Q0urFl3glayWstZYmZLmXJx41F4nhV6okSREeooBrJthZYXnjitdhfVate9lp2AiLSSNVdOTumvCdImpH6X2p9yZUpttwS32ouaObKZlBWBnIa1VU5TnzRGJ5BWsuZ2VncyltN6d5oz9bvTlvyvRK5Mqe2yXC5urXwrR8amZWcnEDL4O8EBtKYAAeAyhtHzVgdzWiTtsewEPn61subKyZjTXQBu926opn6XavdcmVLbzcWNd464yzPt8oUKz04gvLjENaRlEuCWkfK1lI65TtqjE7SQtYeco2GXihuxeW7mq/y9CaQ2Ddyao3DayPRw/jF4V5ZG4pane8JkRm8uQdJflmvYa0RE2a/MSKgck9VF1Xn9O0wlmNsJ/BhFbt2U8q1ktZYzRZewjKVMqbgxePrbzNf4Hag9ZyBuNGKH99Ma1sYDXF4Q/6Id9QsDVPybOyAkEd6MZfYon3jYzo0bSxUuZb7eyIt6iiDDm689sQ%2Bn16fyeY4iawlBWNU5ZV8XA/HfH7MxSebO2ZcuexBIThq4cOaQ6hT%2BDCOW14JBK16v5xObtZzKhUESWVuzWhFkqu6p5WaRM1WfXuVa4bblQ710afae3qNgizRwofIkpieXj7%2BMWSMDN7rGdD9FIFvA5xBkMwMWNDSLnAWqmVYRbhF4exMIWZxPTRq4UI21GEiMDNxyh238FMlmVkMgbNOCIC16xSxyWuhe06ZwC9DrTSAuK1lNGjhfha1dGBr7ey%2B46siDSxem8WNyZj8W0%2BK3OiwIssbh1%2BrOIqeF7jVtCrcBCKQ2DZyvAmMaXL7EdmBYjtnP%2BBMQTIXI7V6/rNtuc%2B21%2BGHp1gRZ4%2BxbdWeR00r/0naF284EUmq4WertkTWtBJtZ5CzRzbKOcBOBWPqX2hYCZwuB3jGQs4WutBUCB0dABHJwA0s9IWCJgAjEEl21LQQOjoAI5OAGlnpCwBIBEYglumpbCBwcARHIwQ0s9YSAJQIiEEt01bYQODgCIpCDG1jqCQFLBEQgluiqbSFwcAREIAc3sNQTApYIiEAs0VXbQuDgCIhADm5gqScELBH4B8fIukgzke5MAAAAAElFTkSuQmCC" data-latex="{^{lim}_{n\to \infty }(\frac {1} {{n}^{2}}%2B\frac {2} {{n}^{2}}%2B...%2B\frac {n} {{n}^{2}})}=">
A:<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }\frac {1} {{n}^{2}}+}{^{lim}_{n\to \infty }\frac {2} {{n}^{2}}+...+}{^{lim}_{n\to \infty }\frac {n} {{n}^{2}}}=0+0+...+0=0">
B:<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }\frac {1+2+...+n} {{n}^{2}}}=\infty ">
C:<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }\frac {\frac {(1+n)n} {2}} {{n}^{2}}}=\frac {1} {2}">
D:极限不存在
下列各极限均存在,则__________成立
A:<img class="kfformula" src="" data-latex="{^{lim}_{\Delta x\to 0}\frac {f({x}_{0})-f({x}_{0}+\Delta x)} {\Delta x}}=f'({x}_{0})">
B:<img class="kfformula" src="" data-latex="{^{lim}_{\Delta x\to 0}\frac {f({x}_{0})-f({x}_{0}-\Delta x)} {\Delta x}=f'({x}_{0})}">
C:<img class="kfformula" src="" data-latex="{^{lim}_{\Delta x\to 0}\frac {f({x}_{0}-\Delta x)-f({x}_{0})} {\Delta x}=f'({x}_{0})}">
D:<img class="kfformula" src="" data-latex="{^{lim}_{\Delta x\to 0}\frac {f({x}_{0}+2\Delta x)-f({x}_{0})} {\Delta x}=f'({x}_{0})}">
y=xcosx+sinx是奇函数
A:错误
B:正确
f(x)是定义在(-l,l)之间的任意函数,则G(x)=f(x)+f(-x)定是偶函数。
A:错误
B:正确
设<img class="kfformula" src="" data-latex="f(t)">是连续函数,且为奇函数,则<img class="kfformula" src="" data-latex="\int ^{x}_{0} {f(t)dt}">也是奇函数。()
A:错误
B:正确
<img class="kfformula" src="" data-latex="{^{lim}_{f(x)\to \infty }{(1+\frac {1} {f(x)})}^{f(x)}=e}"> ( )
A:错误
B:正确
若一个函数在某点的左右极限存在且相等(设置为A),则函数在该点的极限也存在,且为A ( )
A:错误
B:正确
无穷小量和有界变量的乘积定是无穷小量 ( )
A:错误
B:正确
<img class="kfformula" src="" data-latex="d\int {f(x)dx=f(x)dx}">
A:错误
B:正确
若一个函数在某点的左右极限存在,则函数在该点一定连续
A:错误
B:正确
若一个函数在某点的左右极限存在且相等(设值为A),则此函数在该点的极限也存在,但是不一定为A
A:错误
B:正确
如果f(x)为偶函数,且<img class="kfformula" src="" data-latex="{f}^{'}(0)">存在,则<img class="kfformula" src="" data-latex="{f}^{'}(0)">不一定等于0
A:错误
B:正确
|
|