|

 下列函数为奇函数的是
A:<img class="kfformula" src="" data-latex="y={cos}^{3}x">
B:<img class="kfformula" src="" data-latex="y=cosx+sinx">
C:<img class="kfformula" src="" data-latex="y=\frac {{e}^{x}-1} {{e}^{x}+1}">
D:<img class="kfformula" src="" data-latex="y={xe}^{x}">
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {{x}^{2}sin\frac {1} {x}} {sinx}}=">
A:1
B:<img class="kfformula" src="" data-latex="\infty ">
C:不存在
D:0
设函数y=x,则<img class="kfformula" src="" data-latex="y'=(\, \, \, \, \, \, )">
A:1
B:x
C:-1
D:-2
<img alt="" src="http://file.open.com.cn/Lms/ItemDBAttachments/image/singleselect/shuxfxfs/20061012/5da114cf.JPG" />
A:A
B:B
C:C
D:D
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {sin3x} {x}}=(\, \, )">
A:0
B:<img class="kfformula" src="" data-latex="\frac {1} {3}">
C:1
D:3
设<img class="kfformula" src="" data-latex="I=\int {\frac {{e}^{x}-1} {{e}^{x}+1}}dx">,则I=
A:<img class="kfformula" src="" data-latex="ln({e}^{x}+1)+C">
B:<img class="kfformula" src="" data-latex="ln({e}^{x}-1)+C">
C:<img class="kfformula" src="" data-latex="x-2ln({e}^{x}+1)+C">
D:<img class="kfformula" src="" data-latex="-x+2ln({e}^{x}+1)+C">
<img class="kfformula" src="" data-latex="x\to 0">时,下列哪个变量为无穷小量( )
A:<img class="kfformula" src="" data-latex="\frac {1} {x}sinx">
B:<img class="kfformula" src="" data-latex="\frac {1} {x}cosx">
C:<img class="kfformula" src="" data-latex="xsin\frac {1} {x}">
D: 1-sinx
下列变量在给定的变化过程中为无穷小量的是
A:<img class="kfformula" src="" data-latex="\frac {sinx} {x}(x\to 0)">
B:<img class="kfformula" src="" data-latex="\frac {1} {{(x-1)}^{2}}(x\to 1)">
C:<img class="kfformula" src="" data-latex="{2}^{x}-1(x\to 0)">
D:<img class="kfformula" src="" data-latex="{3}^{-x}-1(x\to 1)">
下列两个函数是同一函数的是
A:<img class="kfformula" src="" data-latex="y=\frac {{x}^{2}+1} {x+1}与y=x-1">
B:<img class="kfformula" src="" data-latex="y=\sqrt {{x}^{2}}与y=x">
C:<img class="kfformula" src="" data-latex="y={3}^{2x}与y={9}^{x}">
D:<img class="kfformula" src="" data-latex="y=lg{x}^{2}与y=2lgx">
函数<img class="kfformula" src="" data-latex="y={(x+1)}^{2}+5" width="122" height="25" style="width: 122px; height: 25px;">的单调增加区间是
A:<img class="kfformula" src="" data-latex="(-1,+\infty )">
B:<img class="kfformula" src="" data-latex="(-\infty ,-1)">
C:<img class="kfformula" src="" data-latex="(-1,1)">
D:<img class="kfformula" src="" data-latex="(1,+\infty )">
<img class="kfformula" src="%2Bfs%2Bc577/P%2BSu63Z8uzs7PPzs7Mnib8EQEiQASIABEgAkSACBCByQicNrl%2BVk8EiAARIAJEgAgQASJABISkk0JABIgAESACRIAIEAEiMB0Bks7pELMBIkAEiAARIAJEgAgQAZJOygARIAJEgAgQASJABIjAdARIOqdDzAaIABEgAkSACBABIkAESDopA0SACBABIkAEiAARIALTESDpnA4xGyACRIAIEAEiQASIABEg6aQMEAEiQASIABEgAkSACExHgKRzOsRsgAgQASJABIgAESACRICk8%2BSQgXNF5JMi8q%2BTYzgcxSQEriwiDxCRiybVf1zVzpb/2fUfF257bJdYx2flPiLyBRH5a/yT7pI3EJHfdH91xQdLv1/QND/dIwIkneOzcicRuaeIvGC8iv9/%2BTIR%2BayIfHWgriuJyJtF5Iki8lgReddAHVt%2Bgv6%2BVkSeX1GWIEeXiAiU6lKF%2BkwRefWBYFOah1uKyHdF5B4i8vkFk6WyArm9WQe2%2BO42IvLNQttni8gvXX3XF5EbJpm%2Bjoj8qXIoQtm7isj7B8Y2W/5n1I/5fI6IPKKCCdYA9MGvG%2BUGIDvhE%2BqyMRRn6DK7bmq9WiqXkC8Q1seJyM8qDeGQ%2BpFB3WP7WNJdqtteISLPG5sGfnVICJB0js0WlDTIDBbkGj%2Bt7zUDxBNKCkTkVQdAOIGVbqYgJOcUFJ6WuW4nOfJzoUoPhOeQFRrk7K0i8iIRefsCgVM8vmNkRUl5pNrSxqAbh6/jd2mOr5pIc6uNkUNTVP4hU28Qkad33ghE62%2BNzf69hJctA%2By%2BLCI/FZF3i8hlPQ10lKUu6wDLFZ2ly7AmccirHUpULp88eBBVGfxQox3onocMHnwUHxhmSodlJbUYK/rC27pxeTyIL0k689OEjf3aIvL7pOxf7orBIvMpEblgxVnGwr63iDy8s04sWlgOW5arJdakzi5Vi0c28YiyivRJ63lHgJC3rHGR9maUWZM450in9hnzAmv7gzIHgdYmiA0M1hCVQT9/LctebWOLELQe3FubrK9rxvryeOX6X5urnvFSl/Wg1Vd2li7T9fPFymG5tWZalnSsaRzGWzdjvp0e3Qw5hz4pHfjX1G19M8fSx4YASeeJ0OOqGwTwLBH5qIjcX%2BTIG/WPSeRwLSun7QHaA5ltKQL9JroxqXK8yQ6umaGIQG5KVk6MTcd18eAp3hIpnLBb1oDoqf84FmpUyUc2wBHSGbGoeBLlSeYS0lnDfGTTOkNETg9aDmetr61IJ3XZ3BU7U5fZg95TkotQ72hKByys6Y%2BLyF2cS4y9Do%2B0lbsyt4f3%2ByVLvV7fezec2kE30j7LHCACJJ0nTtp/RQSWsccnP7UfuWt0EMMLV7Zyai9Ads9z7VnCmBMxXMO9RUReXJE/q3y2cD6vLYWS1cwGEPSSztoVsV5T4sRd%2Bum1MbDGFe9LNlzLer20ZpOla2pLos5Prhx69VXaACLXa55E4ZtrmsPTLNIZ2fRbuB7H%2Buqx3o64HOiYqctas7/s7zN0mfaodvMStb6XRpdbnyWLZGT923b0kHzbQuPwUdYbEeB3rYwllH6ey%2BRy11%2BTdB6dHpC%2BDya/r9dnZg7%2BT9isYQWd9UNAxqMCvp0lK0yvkpg1jly9rZO0kuN/p%2BCopZbOPWMRwX3EkufrjfhswmIB30F/vR61slrS%2BfdMoFiEZPVee0etkMCjFQhVk1Xr/4pya8jUFpZO6rLIChsvs7Uu055al6H3iMiDOw0gOd9m1RE5y2VJ3ksBT6UAJcULbjg/FhEYAxDIBAPPe900fEJEcCuH8b2pI%2BBxfDb55WYIkHQehRrXUYiqhm/lpzOz8DQRufWA32XPhMJf9FIRyZFeW0/ptLsk2rCnnyNla9Y0KCN1JlfSiYj80ajGHlIyMpYtvln7%2Bql2BZ9rK2pRsSTqnynI7pUGoBmWTt0McfOAg2Lk1xP9P3N9bUE6qcsiEjFeZktd5vW%2BBvZYPRmVbRDMHxi3JTsO7HvI9NHz8%2B22SKcaEmo%2BpRGXnp4%2BsuyOECDpPDoZOR9OWyJKCJdMcYTY1hblGpaYJf2vfVvqGxQQ/Jb02sVer/8xRT73WsLWJmyzMKnV2wrg6e2TWhxzV7YeL09Qay4PlkTdWERg7bRpWNYknfb6LrLR2jHDmvu1AGiz11fE8qvdHL1epy4LTPSCIrN1mcqIlXF/89B7sEafERWPwB4rgzUZy%2BX2tf34h1tTEdKJdfhSEXlCIVr9ZNDdC0Tr5P50S9Kp0dlInwJLno8Ih4XxzORLeVyoax7C2xU6gL9HIqGX9B%2BBSsidVupD68p1r6Sz1O/cv3uC00s0gP9ecYjKxozTvr1q9xZk2x6iZjX3q%2B%2Bv9cnSv/nrdaQmeqMhnmuSzpb82/622s3NRav%2BNeQqaun0OEZlB%2BWoy3rQ6is7Q5f563pcMSOtHK6XNU2aP4TmSGftdsL6j2P9o25P/lQPXCUZAXBzgXyxNpLeBwhZ9CKkE8YFBMuWcjCTdPbJ40GV3op03ktEIKgIzgGpeqeLCAdocHr/2Iq5L6MTgb4h/yF%2B6vz8rfT/r3P%2BMuhjBDP4fj4y1XGj9FoQrsthxYSDONqBP4sn3trnUjuRhNG5TRHKqZWQHW0v7XcNc42YRD8wz6pwcn6DOataJCeett9rAYjKypbl1rZyWuIOy8bVReTZJouAKnq7yXkCZ9Mi1f7m/cYilr2oJTviPjIaiDB7fS2RnwhRpS67AuFD12WeePUGHLbWE3Rk7VCjQT7YG0E6ba7N2itDLdL5WxH5eiKxpfZJOpdoip1/GyFQawwBJzU4C0N48d%2Bw5Nm2oSyRKgiCXSJia/SjVoc63tf6ECWduNrSRO86NiSl/kXyFf2ciNy9QmBL7dgNt2aNKo0zZ6WyZZf2u4avRkx%2BX0SuYXyKcptp6So3qoxKKUF8/7SdBzZSOM2WPV%2B/kqbWfOE7tUxg7moJ8FEnZPsvIvKVFBBnX7y5eXol58Mi8kN3Pd6y/uXm0PpsWYsj8t/614dqlhOLjc4/rufeVkmnVXMjaMmovr6y1vpqRcf3ylZEJqjLLk93t0QHt%2BQE2Rlm6rKIrltyuPYR7BjvM0TkM2nta/AdAukiLxcpXi3SaYNDS4GKkbH3rhuW3wkCW5FOOLXrc5GIzv6GC8bB1TrK5AJ4oEBB2EZ%2BuKKIkljtw0Mr0YAR0glSjRxoNhAJ333AjDmHgR1frh1spEiLhKi%2BWt7J2vUfFAle%2BcFp0//W6Hdpjqzl6z8u0CSXNqM3ZZJvF3VeT0TuaKzXub7pizk/TwoXV8LH/SKGjv3biQRivls/jAMpT3ClWuo/MEH6LxBsjci2Pl4qN89NVnqbNqq1CeRIpyWaSmgRKIb5z70M1Lq21s0MfmBPFZFaZoOIVTBH9GeuL9verdJc2LlqjV%2B/r61hLUNdtlwHH7cua6059G%2BUdKLunE9l7hBeIpE1fHCYLaVM8n7Y3p8f9WL9tnI5t3Qi/75TBLYinTp8tfp5x%2BWW0/sW8CFI6GGN6/Mo6YQbgf7U6lAjs358vh0sQpCK3FWH/za6eeVI50i/gRtebsIPVqzci0ro05%2BNZUpP1CDf/urGKtORlEk1K%2BcIGdlC9mwbSsJxzV16IciWj2xOusk8KblZ%2BDRAqE8tk0hT4q%2B9Wlf9OVztPIA42xdSrEUFbdurw1xQg934cECAv%2BkI6cxtcLrJzV5fljSqv6wd6%2Bi6zcknddnlrly9OnhPuiyyrmuks5QDM1ev9QNFECDkU3VEpB9WBnssnSWCSdK59a6zYXtbk05N4%2BHbPS5/Tgt1y/EeZSOk009facy1abbtWGtUJG/iWptXpN%2BwqNzUEE0o7Z846zKUlr9OVRJ9kXs%2B0W/MI6Szlopj76TTznVU2UfKKenXK2NPOr1lWecH1/WR%2BkuWTvUB9aTT1t8itJD5S0QEjxrADziX2SCqMmFlwXvm1tK69foqPXFYWrct14bc2KnLjqJyiLrMrruRVEaKgA0YLCVur0Wvlw7xpXXbSzpzVleSzqhGO8ByW5POnDLcgz%2BnEkp7BZ6bzmjidvst/Dfxw4YX%2BcEBHrnSEL3u01VsSToj/QY5huuD5hRFoBSCr1pyZSM1cwpv9Hq9Fa28Z9Lp%2Bx4he5CnVjnIDDYI5M0sWUb8xqLl4LN2i/RGc8tfFATzfSLyQiPkGsxgr9dxpRzNRuAJJ6qOXClG5/k41ldpQ40EikRz1np3Huqytg7emy5rrevoWvBz72%2Bd9O%2BRRyRycuQDlnpJZ67O6PqN7KcsszMEWuRg7e7aZ9m07oj/0dr98PVFHO/xDYgYElFH30ZXMtsTIIXoflzF50jqlqQTc9Xqd87yG7UG106zOs6e9FQ5guLneVSZaTCIphEppfoYlVPU75/fjGw6EdJpnz0tETZr7dMx9IzZ4oqoeLx3j2Cxc1JQQu4wMGqRj8jG6Dxvsb6wuQOX77nnVkfxoC5rr7pD02WRdT1KOttoHS3RK5cknb0In2Ll90A6W/6cWwQSRYkvgm3gv6hBUS1x0fRQPkAK9VifI1sProLgG5n7%2BxabIvoS7fco6VRCBesY/AyVnCgOEWLhsfd%2BgjNO0GqNaqUjacmF/XvJqX8t0mnbypHOUuoUHasGW9lk771kPkc6tS%2BIAkaAUTSAKyIbeyWddk6Rr9i%2Bd927uZdkjLrsKDKHqMtsxoOadTti9Y/qolyAmq41BJ/qwx2t%2BtYgndbHdO0Dfqv//PtkBLYmnbheR9ogDTZRBQnLSPT6eQYkEcd7tAsCfF4llyjqub15mz1XL9wJ7lAhriDhFxYi6JeSTv8EmmI52u8R0qkKVSPwNb1NhNyU5r50ZdRLjiKytTbxPDflcfWkayvSaf0rdfxW6eMpUrh71Py%2BWiTPkk5EryN4DFbs89N/Iwm2P3iU5mLPpLO0vkpWKZV96L6rJf3SQ8BzGFGXjengvegyyJDNn1tbW0tIp3fnyKXiUr/NR6e0SYhIb7l4rEE6W37eET3NMjtFYGvSqVZLEM%2B/JashiCfSGkWthzOgjDjea7vw6zyr0AkoLiSWhz8mfDOxkdpUUPg3LCgs%2BNKvVr9uuEjtgpQ2pbQULYx82orRfvcq6pICtT6evu8tqyLqhN9hxOWhpsCjlibb18gzjK25KP3dWjsidUT64jepnEtCTuGrv1fpYBAhnZqOyLso%2BOCG1ji2IJ1rry/MX86FwZJRkPtIDs6WLFCXjengPegyXWd%2BDVhd0NKHXj6se00rS4T9Npfpweq%2BEvksBStp3bmxWdeiUqBdS%2B759wNBYGvS6WGp5efcEsKcr2mpfVyNX1bI/4nx3C0Rz18lIoTgGix8/D9%2BmiQ/V3/rKdCIpTOCm39RYrTfPYq6lMLD9zdCtqziRS5OfU878m0Ln8jGby1UsNLP%2BPVYOtGHWu5W7Z8nndYloSVbdsPyG1%2BLdOpmWtqo/KGj9Ra0WkrtQSNiuWnNUwuD1vf6d7%2B%2BctZkX1ft4OXL1qxN1GVjOngPugzznMvhqvM/ot/sWtKE73owycmz6raajJXIMeobsXRqm9qf0uEWc5T7qaEHf9tbmT32KYJRVNd1l9uSdIKs4RUeayXcQ6qk3jyaNrq8G/DGB1AGz0pXjrmipQW9dj%2Bi9UUiPpUMtCxY0TZPlXLYYHDtDIJV%2B50hIqeng1ALG2sl/EPKnYoUQmgj4rdVSkzeIp34DgR3jeT7LUunbmA14lrCacb6Klk4W3Olf7dkunUgoi6LonpiuVNdl6mcta7PFbmSK0kuRV50VpgqKYrUAZfbknRiUVvfTc2ddufAxro2xPCbPDsRYPQDZBhX4tGfvqG%2BpksA%2BoETnqYfivblOMvBQnpfgx1wvbTjFajj7DvbJgInAwLUZevM4qmsy2q5jddBl7UQgYTAlqQTDu4aQNR7Il97wiwBhg8lyOMFnY3Acos3aXu/yzUDPHAtX4po7%2BzapsWVaCLi/syGv%2BqmHWNjROAUQIC6bL1Jpi5bD0vWRASyCGxJOjXyW1MgIN%2BlfZ98yylS30kQpS8tsC7WUh/1jGetenraZFkiQAQOHwHqssOfQ46ACJwyCGxJOk8ZUDlQIkAEiAARIAJEgAgQgaMIkHRSIogAESACRIAIEAEiQASmI0DSOR1iNkAEiAARIAJEgAgQASJA0kkZIAJEgAgQASJABIgAEZiOAEnndIjZABEgAkSACBABIkAEiABJJ2WACBABIkAEiAARIAJEYDoCJJ3TIWYDRIAIEAEiQASIABEgAiSdlAEiQASIABEgAkSACBCB6QiQdE6HmA0QASJABIgAESACRIAIkHRSBogAESACRIAIEAEiQASmI0DSOR1iNkAEiAARIAJEgAgQASJA0kkZIAJEgAgQASJABIgAEZiOAEnndIjZABEgAkSACBABIkAEiABJJ2WACBABIkAEiAARIAJEYDoC/wODacmbmkpjsQAAAABJRU5ErkJggg==" data-latex="y=f(x)在{x}_{0}处左、右极限存在是f(x)在{x}_{0}处连续的\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ ">
A:充分条件
B:必要条件
C:充要条件
D:前三者均不是
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {{e}^{x}-1} {{x}^{2}-x}}">=( )
A:0
B:-1
C:2
D:3
设<img class="kfformula" src="" data-latex="{e}^{x}">为f(x)的一个原函数,则<img class="kfformula" src="" data-latex="\int {xf(x)dx=}">
A:<img class="kfformula" src="" data-latex="{e}^{x}(x-1)+C">
B:<img class="kfformula" src="" data-latex="-{e}^{x}(x+1)+C">
C:<img class="kfformula" src="" data-latex="{e}^{x}(1-x)+C">
D:<img class="kfformula" src="" data-latex="{e}^{x}(x+1)+C">
若函数<img class="kfformula" src="" data-latex="f(x+\frac {1} {x})={x}^{2}+\frac {1} {{x}^{2}}">则f(x)=( )
A:<img class="kfformula" src="" data-latex="{x}^{2}">
B:<img class="kfformula" src="" data-latex="{x}^{2}-2">
C:<img class="kfformula" src="" data-latex="{(x-1)}^{2}">
D:<img class="kfformula" src="" data-latex="{x}^{2}-1">
下列各等式中正确的是
A:<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}cosx=0}">
B:<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}sinx=0}">
C:<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}{e}^{x}}=0">
D:<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}lnx=0}">
<img alt="" src="http://file.open.com.cn/Lms/ItemDBAttachments/image/singleselect/shuxfxfs/20061001/41b0b9f8.JPG" />
A:A
B:B
C:C
D:D
<img alt="" src="http://file.open.com.cn/Lms/ItemDBAttachments/image/singleselect/shuxfxfs/20061012/18130a22.JPG" />
A:A
B:B
C:C
D:D
函数<img class="kfformula" src="" data-latex="f(x)=\frac {1} {ln(x-2)}+\sqrt {5-x}">的定义域为___________.
A:(2,3)∪(3,5]
B:(2,3]∪(3,5]
C:[2,3]∪(3,5]
D:(2,3)∪(3,5)
极限<img class="kfformula" src="" data-latex="{^{lim}_{x\to \infty }\frac {ln(1+{e}^{x})} {x}}=">_________________
A:0
B:1
C:2
D:3
函数<img class="kfformula" src="" data-latex="y={x}^{2}+2x-3">的单调减少区间是( )
A:<img class="kfformula" src="" data-latex="(-1,+\infty )">
B: (-1,0)
C:<img class="kfformula" src="" data-latex="(0,+\infty )">
D:<img class="kfformula" src="" data-latex="(-\infty ,-1)">
设<img class="kfformula" src="" data-latex="x\to 0">时,<img class="kfformula" src="" data-latex="x+{x}^{2}与ln(1+{x}^{k})">是等价无穷小,则k=
A:1
B:2
C:3
D:0
曲线<img class="kfformula" src="" data-latex="y={x}^{3}">的拐点坐标是( )
A:(0,0)
B:(0,1)
C:(1,0)
D:(1,1)
<img class="kfformula" src="" data-latex="({e}^{x})''">=( )
A:<img class="kfformula" src="" data-latex="{e}^{x}+c">
B:<img class="kfformula" src="" data-latex="x{e}^{x}">
C:<img class="kfformula" src="" data-latex="{e}^{x}+x">
D:<img class="kfformula" src="" data-latex="{e}^{x}">
下列等式中正确的是()
A:<img class="kfformula" src="" data-latex="\int {sinxdx=-cosx+C}">
B:<img class="kfformula" src="" data-latex="\int {(-4){x}^{-3}dx={x}^{-4}}+C">
C:<img class="kfformula" src="" data-latex="\int {{x}^{2}}dx={x}^{3}+C">
D:<img class="kfformula" src="" data-latex="\int {{3}^{x}}dx={3}^{x}+C">
极限<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {{x}^{2}sin\frac {1} {x}} {sinx}}=">_____________
A:1
B:2
C:0
D:不存在
设<img class="kfformula" src="" data-latex="f(x)=\frac {{a}^{x}+{a}^{-x}} {2}">则函数的图形关于_________对称
A:y=x
B:x轴
C:y轴
D:坐标原点
下列函数中为奇函数的是
A:<img class="kfformula" src="" data-latex="2{x}^{2}+3x">
B:<img class="kfformula" src="" data-latex="ln(1+{x}^{2})">
C: x+sinx
D: lnx
<img class="kfformula" src="" data-latex="y=\sqrt {1-{x}^{2}}">的奇偶性
A:奇函数
B:偶函数
C:非奇非偶函数
D:既是奇函数又是偶函数
函数y=lnsinx的导数为( )
A:sinx
B:cosx
C:tanx
D:ctanx
设F(x)是f(x)的一个原函数,则等式( )成立。
A:<img class="kfformula" src="" data-latex="\frac {d} {dx}(\int {f(x)dx})=F(x)">
B:<img class="kfformula" src="" data-latex="\int {{F}^{'}}(x)dx=f(x)+c">
C:<img class="kfformula" src="" data-latex="\int {{F}^{'}}(x)dx=F(x)">
D:<img class="kfformula" src="" data-latex="\frac {d} {dx}(\int {f(x)dx})=f(x)">
已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )
A:[a,3a]
B:[a,2a]
C:[-a,4a]
D:[0,2a]
设函数<img class="kfformula" src="%2BYhVLs0FiK4RQCCU2VGQTDRVByyoIQSW%2BomEjItkV3dZLlEK5We3KjzlxXfPMe2fuzJ153pwp32fO/Tjnd8/933PnXSJ/3AMZHliSYeum7gE5QA5BlgccoCz3ubED5AxkecABynKfGztAzkCWBxygLPe5sQPkDGR5wAHKcp8bO0DOQJYHHKAs97mxA%2BQMZHlgngDaJOlnSaeyZvzF%2BIykx5Je9NDW0E3ckLRG0jpJLyWtH7rDNu3PC0DAc1zSL20m1/CutXd%2B4hBdkPRE0qNqLv9LuilpX09%2ByG5mXgBiFT6UdDt7xl8b2C1p%2B5SCUTM35h3CclTSRWk6l%2BBTAeiypOWSPkh6K%2Bls4MyDVaD7yj5hnO5WYF7tEcw%2BmyLjHJN0KWiUv00lbpMYCHqEbLBaEgHdGTmIv93pOftYPOh3V49bY5/w0BYZJ4SnLgORpVh4LMBXko5Iui/p174HU9feFEhmRV2RdFjSa0l/BwFFq1yr4BrKH/R5YOJayOaOr9jCDA7guVVpJH7j4ZDBoiwS2yKdNESeDIAD4jRtJqy4tQPrFILAyg1X%2BlCw5rSLoF4ZZUv%2BZjAZQOi6ZQNl7O/GPzZArJSTlcaxk0Y4yBLBLQFpDji2lQHPrG3JtrbiJ7SxAarTPKGz/6q2tyFFLiL90NTqK4ETgCOEh6wdn0bNj3tKZR4b39gAAQjPrOJY6okDrbS/amuVpAfVloTzV1RFuD%2Bi010Iamo/uZkktt8miaDzfJS0NCpX8DtFxHB7JWPbKZX5/VPZ0IbFM3yn7zF/094YAOGU36pRUF3locLKg0AMV1dqYFmBVhSkfWpG6Cqcy9ZIMW5Lg7BM7afPYBBksh%2BnpnD7ZlHZgjJdE/drceP3N9WPHD7Qcjz/ldJ0YwBkzjABzakhrPu0zQzUkO5FQYgrtpy0/mwQ47MAYoyA2OXhKD1rXsCD/qvbckKAuvRb1GZMgJqcaE5IyQwARAkgBrONHkjpp6/AWIasE7xTr0t954MxAeKEtXeBekWXwNrJrs3cuvTTFSiAR7SHgLOVsZ2j307PSU3q8/zbOLmrw2bZLSSgsetS5EPv8GxNHDAC/FzBUxjzBhaKp/agAd9F23Di8Md9bUyAUm6WgYFCY5tjPO026arY46x%2BskEqcLkRY3xPC/aXO95G%2B7EAShHQDJx0zz1P6jdAwPB7TWEy1kmhU9jyuEcKdVSop/oW0eHVzaDBLdH4WAClCGjmv5CoREdtCO7K6nQVonVjA4RDXtbWxZCs%2Bm/DBa7Vduoq8yWYaNXHWAClCGibCDqIm/q6h9VsX%2BmhZTZXx2PugwhAyodoTe23cmbiy5Ylf4zEshUV%2B/7uKXFY3V4bC6AUAW0zYvuJvxGy38hkP1UQUVBDK7GCdwQFtusNpxrsuSao2766eTTNKh4jVszx%2BTydwBj0WAC10QFDnpIA%2BcS8BS2N0TJvjQGQCeg2hT6700oV0yneQzy/L1XyTxnQPL5TCiCE6g%2BVliFw3Eu1/e8CtjIuRPv4LhqI2fpKb13zyMgkjvFh7QPRSibpAkLTcbxNcPpqp02fi/LdUhnIxCr1lme%2BbSwelkoBtHg85jP5xgMOkAOR5QEHKMt9buwAOQNZHnCAstznxg6QM5DlAQcoy31u7AA5A1kecICy3OfGDpAzkOUBByjLfW78CQTe6jKzb9QUAAAAAElFTkSuQmCC" data-latex="f(x)={e}^{2x}">,则不定积分<img class="kfformula" src="%2BmXO20i%2BO3Nm5pnzzJxn5szfAfnnCDSOwIHGx%2B/DdwTkJHAnaB4BJ0HzLuAAOAncB5pHwEnQvAs4AE4C94HmEXASNO8CDoCTwH2geQScBM27gAPgJHAfaB6BrZLgFkn3SPpO0sOSfm1%2BphyA2RDYIgmulvSipNMlvSDp%2B0CI2UBww20jsEUSsPp/KumpsBNACHYF/xyBWRDYGglY/b%2BVdEYgwCyDdqOOQIzA1kjA6o8eOManyRFYCoGtkQABTDiELvDPEVgEgS2R4CRJv0h6JJwIzQnAeZIulXRkZCOPSvpA0hcj7eyX6lPh1jfeVfDcEgkIgzgNujgI47kcg4m8T9I1EzRgtp5ogAhT4tYH/Sp4bokEnALdLOlYSX9P4KB9Jl6R9J6k13sK8O9/SjpO0jeS7pL0jqR7e8pfJ%2BlySTfO2OctmB7Cbao%2BLo7nlkhgF2KERbXfM8F5cWLsPZYYui04bN8uwES/Jul9Sf%2BGuoRMbNO7sHozEOv5zI7fLel6SWdJ%2BlnSKZn11io2hNvU/SrFc1T7WyGB6YHPJF1UOSIclVUEhwJExHU6Pv7%2Bxo5d4MloxTcSsMofvaMO3aXdaytCrJ8k/VBRrxKi6mpDuFUb3rG71uBZ1Y%2BtkMD0wBhRjNM%2BK%2BlOSV3ORbz5Uuaqy0rNce2rBWEObRLO5Ypk%2BvN52K3GCvSqyc%2BsVIJbpsmsYqV4ZhntKrQVEpgeuDWkTJQOiJWYMIab5ad7KuPYZ2Y6te0khCx92iFthlAKDdHXflreiFbSRikuU5QvwW2K9sxGKZ7VbW%2BFBNwNnDbipphQ6IEQ7xPPd305oDLhP4b4HhuGD7ZTfdHl1Lkkoy79uWFAa1RP7IQVc3CbsLk9U4uRbwsk4Hb4rzD02v70aYB4cr4K4dIu8UpIhVDlI1ZnZef7J2OFRzzeIensTI9gu%2Bde5JLM8msVy8Ftjr6V4lndh1qnq26woyJC%2BJOQLUruUM3HRPHtckAcfO7x9rXBqnZFINhRIXTjmJbdpU8PEIvfFMZ1sqR3AxGxdXw4Wfo4Y4eqwTOuswRufX1cpO25nSJnAngv8FAQrQjk3O8ySQ%2BGwhw18n0d/ouoTWP5JQDtaoNw4oRoxce5Hw9OvEsPsLvZJRxjhTRoHsI1Qr4PJR1ekdi58zSm3BJzNvvKmAPAW5KuGpEuYaKYFXVX3L4EoGkbaAn0yvnJqdGQHuC%2B4%2B3g7IYhtuPTKsKpLzuEPnjUpp5zKZhiuARuze8EXGqdOCJdwhxt6JRlicmM27Aj0K5j1qHwDRJw1GufEX1ojDmLTmmZJXBrmgSxKK5NlxhaVeOVtCv846KuJAzDHke6XU8%2BY4exE6sux43vNHKc0mytEb46CXJmaEQZE8W/SapNlxhaVa17c1%2B%2BWKxv4px%2BoVVSx%2BXU4zlJt0vKTbMg/udb4yRpbtz63CfFc4Sb7a66xsoS98hEMfFv7RuCNFbuGzGOxIVaruOVgo5zs%2Bqbo9IvhHp6YkWow1FqCfbYGtI8pf3NLT83bn39SPHM7W9xuZKJKDaeUcFuisnQ5ESn9MsVxdjF%2BUisy0lRIMQ6NazkXY7c1U9CFjJPLZbvC3ninSsnP992DnKY4ovAVDdYn6YWxiW4lc7frvIpnlPa/p%2BttUlgN8W1bwhyRTGDzk1yI4mO1c8cLnenSZPMCCM%2BSgSuHXVajhNn/r8nx7kQ8Jwox6lL82Dn3ExCj3WeXNzGtpPWXyxpb20SWKZmbT9yRbEBjGMOpS1jM34bYDk%2BQ31MbUPQK6NwyFZ9/m4kSNuin3EYRZ0LwjGr7QRLPG5JHTIHt6lJsFibQxM79cBie/bLEmPSp3NFsbXL1t71ziDuF06YJuINnZDg2Aj7%2BFjTQjBCJMIwC8VYWRHFpGdw45te6mHrUNATlEHDxDfO2H25IFt1ijnMwW2KdsxGH55TtrFna00SWPo0WZe1lzulR405Jw44XJwJmrMTQMb7F3bMWRyix2gOblP2Z1E81ySBnQzxyotb49Kv9gLJcm9yBLKFJ4j2vueVCLg/MhLsSse3tfKluNX2f3E81yQBvzJ3YeGbYsTSwRDXAxa5M7lZm/GksL13hSLpxCGSCXP6nmNCREKXNAyqdYCt18vFrXYcq%2BC5JgmIzXlQX5I5SvjDiQtn8QgnVvPcRy/pxPQdMVo5Vj4I0LcDWMzfCgFiXTXXmIfmpJZcO%2ButRQJLl%2BC5Y0nKggkmxCY7Se4rrlLwUgKwQtWSrbRtL78wAmuRwNIlap9TzgkTZ/BclMUEy3lZNmef3PaMCKxFAhPFtUlzM0Ky91MraRtrYTXnWN12Yf7KlIARyhASleiBKdt3W47AHgJrrW4I3Np8IZ8%2BR2BSBJYiARmiiE00AKs/R51bDIUmBdeN7Q8EliIBGoBbYQQxF0%2BEQ/zNP0dgdQSWIgHn7Tg/PzHC/4WGnWHOH91dHVjvwP5BYCkSGCKEQqRP%2B%2BcIbAaBpUmwmYF7RxwBQ8BJ4L7QPAJOguZdwAFwErgPNI%2BAk6B5F3AAnATuA80j4CRo3gUcACeB%2B0DzCDgJmncBB8BJ4D7QPAL/AWlHjkwuurRVAAAAAElFTkSuQmCC" data-latex="\int {f(\frac {x} {2})}dx=(\, \, \, \, )">
A:<img class="kfformula" src="" data-latex="2{e}^{x}+C">
B:<img class="kfformula" src="" data-latex="{e}^{x}+C">
C:<img class="kfformula" src="" data-latex="2{e}^{2x}+C">
D:<img class="kfformula" src="" data-latex="{e}^{2x}+C">
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {\int ^{0}_{x} {co{s}^{2}tdt}} {x}=(\, \, \, \, \, \, )}">
A:0
B:1
C:-1
D:<img class="kfformula" src="" data-latex="\infty ">
若<img class="kfformula" src="%2BwGwxrGXzVK5HRCTyU4QYFGkBwVQihcSpdQEYmGiqB1KAhB5XZONIiEuERFjShdajX5xb7Jmv/uzszOzH57eTb5F//vm3ln5plnnp1535n5zjE9QkAICAEhkIXAOVmplVgICAEhIARMwikSCAEhIAQyEZBwZgKm5EJACAgBCac4IASEgBDIREDCmQmYkgsBISAEJJzigBAQAkIgEwEJZyZgSi4EhIAQkHCKA0JACAiBTAQknJmAKbkQEAJCQMIpDggBISAEMhGQcGYCpuRCQAgIgaWF82szu9LMHjGzlwT/GQSuMbObzOzJQmyeMbOPzOyLQjtrzC4OTfdKLQ5Ryp55VMTtpYXzDjN7y%2BzMUc%2BHzezFgc%2BLGrexzBD%2BMTO7rUK93dbzOxTPMQ4B29F5VJND4LlnHhUNs6WF8w0zu2tEIBkQbxe1ZtuZweZ/FTEAz1vM7O5tw3Km9lMcIvGReVSbQ47nHnlUNCyWFs4/zey9SrOqooYvnPllM7vAzH43s5/N7Nmg/Ps6kasx2%2BybfrcT41cXbm9KcU%2BY2fVmdmNK4l6ao3IICKZ41IpDlLtHHmXS7p/JTyGcff/mzWZ258AslCXXxZ0vlPTndsJzdbfU7/9/VREC7TPjJ2IWdGlHwP8MzLgh5jsVZ5veKsq9fYUvKpaAn5vZN2aW238IZ%2BgjH%2BLRnjjk/sYpHrXikM8698ajopG/pHBCbpai/TJZWrCUZDD0PycAwIAKZxf8jy/00a7VYb4iMBplpo7/NbMHzexHM/s%2BEDJE5LVOWFtUgTLvXZmv05fbtDeHg0McwsYQj/bEIdo4xaPWHKL8PfGoeJzlkLa0sBe6mUK/TGYFvw4EjPicqHsojP3/xwZRaT1r5vdAxtQuAtp6RUNfJKLy7Yp2MbCkPK97AeYK5xCHsDHEo71wyGd8BFXHeNSaQ/5y2guPisf4ksLJGwsfX7g0Y2DzhEEMfGAsc72OYcSU7xmELIHX%2BlB/6olz/f8jlWwtbEsMqhz88dMx%2B/ZtRTkcHOOQD%2ByQR3vgkC/Tp3jUmkP%2Bcmr5gs/hEGlLeJRb1pn0OaQtLYzZIvsT/whmP3yOn/Oi4HMGFo8LLT6cf/X%2BZxAR9AjtldazZn7qPOTT7JdBO1nKtwrg8HJ5YIYvsSYObosXyZfdS8SF8/6Mto9xCPtDPNoDh2hbjEetOUQd9sSjYm4vLZyU5/4or7wvv4c%2BR2g9Au2Dpv8/9li%2Buc%2BzGJDKBsKBO2Q%2BxU%2BLD%2BueLvMlZvZh95JhNnlhd6jg04FofYhx5eZlmcO1cnmvju7nzBXOIQ65cIbfDXEm5NTaOUTbYjxK4RB2xKMsyo4nXlI4mSF%2B0EVS%2B/s16fQ3Oz9nfzk75d%2BkRWP2KkEz2wwC8VSXm1NSPESPeQhshXtVU0jPjMM3s7tvF3/XD93s7WMzu2Ei0JJSxuwGJ2Zkttk/EcVSi5lwX8hipqb6fIhHW%2BUQOOTwKLV/xaMYwxK/X1I4E6u0m2QeGIoJQ4z0CMz7gY/URcL9wgjKVxMBprEyqCMCPOfhJRjuRx2zwzLvl6AN7n/0HQdz6nCEPCk8inEInMSjimyRcFYEMzDlwoD/dupEVIz07gR38z6QYnb71YmV0Q6Fv5eH141s%2Bn%2Blt1WrZR22bDuFRyn9Kx5VZIGEsyKYganY0UBPnkL6vmmP1Of0XW4ZNVGhvrgRwoeTVPhr52yCr1m/tdtK4dGc/hWPCno%2BZ/AVFHPIrDGHvoOSu7EYfyZP6lFFZnzPnSiqzuyYU15jOwYY8BLO6eGRwqNcDlGieFQgSxLOAvAiWUM/5FhyCMzm5tTtSGGkONYC/Iss61OFNmYv5/tweRjmpS084uE4qik8yuUQpYlHOUwO0oqwBeBNZE1x6Ht2xIWDASl3cCKC%2BAXDDfVTAsWSjGUxm87Dp2VwCN8cp8KmXggSzmn%2BpfIoh0OUKB4VjnsJZyGAI9lTHPqedeoiDvxbXGzip6OG/F1sW/n3hPC2vPxhDD3cA08nzHLnnB5q02PrtJrKo9hlLuJR5f6VcFYGtDOX4tDvl4yPaujoaN8H6NFpZpA%2B40y5uHbMdpuW/x1FRzR/Gpnlhu0mQDS0CZ568921K7ugpBVuQ3ZzeDTVz0fmUZP%2BknA2gTV60iMslaXW0D2dfmclARSEiGUvp4Vu7f7HzusTwkJ%2BrucbWqa3aLlvxHfbHGwYukjZZ0AIoz%2B08fFeW3wZH9sH26IdLWzOiXynBIa8rmMc4vsj86hFX8op3wTVf14BllJEq8g3A68vRil1WUsalp88XHa8lPC3bPsc4SRP6gGBVhwCky3zqEmfasZZH9Y5G9SphZ87TwkSpdSaJf1vK7pOLqXOYZqxzfNzbJ06T65wzuFRbQ6B2R54VL3vtyycBD2IMI9d11YKlt9IE9oZ%2BukP0l7W%2BSl9w3fuzeaUw3KLyzpKf3uJQbeHmRpLzO8a9jGYt%2BSRX4U4xMWhsVeDR7U4RJ33wqNSLTiTf8vCya1IbLOJ/RgZ/jS2%2B5CWi1gf6i4bqXmjErOJT7ooMk56Zo1zxS%2B29zGFBDVspJTTMo3f5NN6mb4Uj1JmnLV4VKv/a9lpyZOT2F5aOGuLGESLXRLM5nJmpf1gQ/%2BC5BrAexAGcf5s48vjGnjUsMGgHQp81eYQdV2CRynCKR7VYM4CNpYUTghfW8T8irWxyGv/rk4XToT2/G5G6D/FANT93zJaAHoVMQOBFhyiGkvwyH/KY0azlWVtCCwpnDERc2x8U3QuVrHf9UEYw%2B0x/VlAyowgt05KXxeBVA5RqnhUF3tZ6yGwpHB6se4wH9vjl9NB2MJnyd9UkMgDPeFVbBLOHLTXk7Ymh2iVeLSevt1ETU4hnGMiNgewmG%2BKAcEt6fwsMY%2B3F18Sl/BKOOegfvo8NTlEa8Sj0/fppmqwpHDGRCwXuJRoKAOCEzc8/J45UXUe/4E3CWcu6qdNX5tDtEY8Om2fbrL0JYUzJmK5ALLtJ7ZEj9mUcMYQWtf3tTlE68SjdfXxJmqzpHCuERBF1dfYK9urk3i0vT4rqvHRhbMIPGUWAkLgmAhIOI/Z72q1EBACBQhIOAvAU1YhIASOiYCE85j9rlYLASFQgICEswA8ZRUCQuCYCEg4j9nvarUQEAIFCEg4C8BTViEgBI6JgITzmP2uVgsBIVCAgISzADxlFQJC4JgISDiP2e9qtRAQAgUISDgLwFNWISAEjomAhPOY/a5WCwEhUICAhLMAPGUVAkLgmAj8BbQdvlhmAl5tAAAAAElFTkSuQmCC" data-latex="{^{lim}_{x\to {{x}_{0}}^{-}}f(x)=A,{^{lim}_{x\to {{x}_{0}}^{%2B}}f(x)=A}}">,则下列说法正确的是__________.
A:<img class="kfformula" src="" data-latex="f({x}_{0})=A">
B:<img class="kfformula" src="" data-latex="{^{lim}_{x\to {x}_{0}}f(x)=A}">
C:<img class="kfformula" src="" data-latex="f(x)">在点<img class="kfformula" src="" data-latex="{x}_{0}">有定义
D:<img class="kfformula" src="" data-latex="f(x)">在点<img class="kfformula" src="" data-latex="{x}_{0}">连续
已知<img class="kfformula" src="" data-latex="f'(1)=2">,则<img class="kfformula" src="" data-latex="{^{lim}_{\Delta x\to 0}\frac {f(1+2\Delta x)-f(1)} {\Delta x}}">=( )
A:-2
B:0
C:2
D:4
若变量<img class="kfformula" src="%2BCAYAAAAxrhmWAAAEKklEQVR4Xu2bPasWMRCFz/0Bgo1gKfojFGzstdBOwcLC2o/WD7C5ln78AwtFrRTRXjvFRqxV7G0sFOyUkV1478tuMtmdzGb2noWLyOZNTs48STbZnR3wogPODuw4t8fm6AAIHSFwd4DQuVvOBgkdGXB3gNC5W84GCR0ZcHeA0LlbzgYJHRlwd4DQuVvOBgkdGXB3gNC5W84GCV2agasATgE4C%2BABgOtEZr4DhC7t4QsA57oifwG%2BNpyPHE3MebgJmjV0XwEcywlY433OdLqoyjIry6uFX6cB3AZw3Kg%2BXQ8aKmVhYkPdqSLlPICnhoDIkv3cuM4qHa9VKaFLOyvAXQNwAoDMdg8NA2G9XBtKq1vVfofuMYAfAA4B%2BAjgCoBXG7tUAWPzsvSL0NVlu8naBThZNt8A6OG6CWDXcClNdZzQNYlFXVH3B2a0MwAOAHimaFp%2BL0tv7rowUh%2Bhyzm34vv9zvQJgIuO/SR0jma31pTsJuWNw9iMVEsvoavlbMP1ygz3BcDrTmO/SbgB4K6DbkLnYHJrTUjQv3WiPne7V/nvb%2BOjke1%2Bv%2B92y0cBfOjA91zWF4%2BD5RHA4p2hgBgOELoYcVqVSkK3qnDG6AyhixGnVan0gE4%2BgpQ/XnEceAtA/qpcHtBVEc5K4zpA6JaL3UEAJwH8Wk7CYMvvaushdLUdHq9f3tseBvBnOQmDLd%2Bpradl6Fo7sbfWI8GtHuDaAE2pv1XorAM8xZuh31jqKoFuVVlpLUJnGdipsKWSZiz09bt57Q5xVVlphG4vlpqkGQvo5HlOEn2016qy0lqDziKg2kAOldMmzczVWbK0bupcRVYaoRtGNAdV7n4KfDkquVQ400l9pVlp8jWLJBSNXdoBNmcQD/42InS5ZBoLk3JQ5e6nNMgHo98BfCoQOiUrTatRW65AbrpoNOi8kmlygcjdT7k%2B9jyXGkxTstK0GrXl9i102mSa2kkzcwI19DxXYzBpNWrL7Vvo%2Bo7XTqbJBSJ3fyxAR7qPHx5tFdAOppLAazVqy5W0nSzb2vIqYjUm1E6mSWnQ6Ns0XWY2OR752W0g5GxOnumGrqmDSfI6JF83d8nn8dubi9L%2B5NrI3o8GnVcyjRV0slPtD4Jfdq%2B9Uq%2B%2BLAeTFiZtuSxM2gItQpea7cSgmsk0uaSZqQGSmU42EGPnczUGk1artpyWqWy5VqHTLrPZDhoWmBMcgU1mOnmmk3%2B3rxqDKac3N8AMrdtbVcvQVev0AhXLYbCkHN7rnu08JOSg89Aw2Aah87FeZrhbAC77NPe/Fa%2Bk8eIuEbpiyyb/QGa77aOSyZVF/iGhixy9oNoJXdDARZZN6CJHL6h2Qhc0cJFlE7rI0QuqndAFDVxk2YQucvSCaid0QQMXWTahixy9oNoJXdDARZZN6CJHL6h2Qhc0cJFl/wNXY9A/A9MeHAAAAABJRU5ErkJggg==" data-latex="\frac {{x}^{2}-1} {(x-1)\sqrt {{x}^{2}%2B1}}">为无穷小量,则x的变化趋势是_____________
A:<img class="kfformula" src="" data-latex="(x\to 0)">
B:<img class="kfformula" src="" data-latex="(x\to 1)">
C:<img class="kfformula" src="" data-latex="(x\to -1)">
D:<img class="kfformula" src="" data-latex="(x\to \infty )">
设函数f(x)在x=0的某邻域内可导,<img class="kfformula" src="%2B1k6%2B5Hu/dy5r/WfWf9Zac/nOEPsMAUPAEPAQOMMQMQQMAUPAR8CIweaEIWAI/A0BIwabFIaAIWDEYHPAEDAE8giYx5DHyEoYAieHgBHDyQ25KWwI5BEwYshjZCUMgZNDwIjh5IbcFDYE8ggYMeQxshKGwMkhYMRwckNuChsCeQSMGPIYWYl1EXhg6e65im6pU1O%2BounTLGrEcJrjvlWtbxSRe0Tk1koB3xCRl0Tk7cp6VjyCgBGDTY3ZCPwuIjoPPxGRyxoF6qnb2OV%2Bqxkx7Hdst6QZnsBbIvKmiNziEMG/ROS15Wf%2BfluDt6B64jW8LiL/25LixyqLEcOxjtxxyY3RXiwi94vIPxzjfUVEvhSRJ0Wk17B7iWWriH4tIhesLZwRw9qIn2Z/hAt4C37u4BkReWiBxA0pWlEa0UZr36Pr4WU9LiKXOh7W6D6i7e2BGK4QkRtE5LFG1J4QkXdE5OPG%2BlYtjwAGy/jgGcS%2BEUY9oo28NuuUUA9KQ611el16OXZigBQe7ohLgUHbePpIyYGkG6vKgxvcsntURG5e5PtURL5PjFXMqAk3fhKRs0TksyUc%2Bb/jabgGsydiUL2m6HQMxECM9UVkQjFpSGr1JpyIT28SkTtWpeUxnbkJPLdF9vafneGGempBDnhlubkWMgDGlxWTbUh%2Bz4fnEWtvihGNGcaDelLVIuYGq7rBxgovLCsCK8O3jsup2ewXReQ%2Br%2B27F2Ou3fOOiYjrBsm83KjDrGoYz78jhgdp9JJmr14p%2BXKrvZ%2BDoDwE7iYwc230yj%2B7/hSy2wIxwP5MYDKvGKe7naWrzZUBNz%2BXxVbigGz4cEVThj8rq10rpz9RY4m92RNa%2B8fjYwxy5xNSBqDez6sZr26KER0Y6Ck6bYEYUFw9Aj9swPiZVL63QF7gP4ltHAjlkkD4QXvEqbEkGP3ftWKuoVVOf5V08wt4WbcHvAiM67wlF0H5MxeyvHxx192fc0ZcYwsliUfaSxmALhjolfKAphhRDRgNZafoNJsYND6OJc5ihsokx/BDOQFI4yMRCXkZ%2Bjvc0dDxWdxeiGONc/c9cur80lDLHUd0ABd/QunJQN/D4GdyESO3DX3iyhk05Qkb%2BFQO/s44f7V4evysekKoPrmH6jfY4eaqnCQxEEYwyDFDjV2OSRkwbV6XcF0xkPci25spwhk9Y3rkVFkwBkjVJQZ0%2BME5UahlFUt/ork/h4imR%2B9YYjTWpn%2BsGdm%2BWQqTgIa0%2BX4NkPdej0SfJDH4OYXSScgkIPwIJQrfFZGfE9ti9Eny6vpAZ8T79xbEw6Vypsr1yJmL3yFOPt%2Bj8ncI/J0Lfg8Go07ahYgrhQnlST7XemwaJrnexogxmtkGc5y82PkiwlYvntNqu2azQwmU56uNaVMsSpusLn5eQgeZHRA8itjkX4uhe%2BVEH43f/RWUf8d9P8czMh9vSPJcB39CN8g2tCLXGImGAM8v7aUONvntuluUpX1q%2BFRa3splEJhBDHrUE9E4mMMHI/IR65Zsr6WM101mhtSHGPAKYrqvRQy9cioxoIdvGKpD6N/dE4h%2BYlDruduELUZEO%2BwgkDje0yregsVR1plBDAqUxp%2B5o7IhYGcQA/ISz7d8nNTzV80RxMAKT9sQq0uoaph6OEhlTuUXKBNrr0XnrdUZPX5b02%2BoPDOJQePdkoy1r/QMYhgK/BIGhA5uaT85z2a0PNbefATYTv5noRgfFpZrKjaTGEpPxG3FY2gCOFFphMcwWqbe9q7ubWBg/e%2BWRObAJoNNaQK3pR9/Nw5i4E/J90FJodYyM4mhNfGoLm/sIBLuMNuRLclHzhY81ZAMbcG/R86W/taoc80anRT2we4Gf%2BxrQGAmMWgc3LIFw1Yf8XNouxLC%2BSWyHQlE1OWLbVcS2oR%2B1wBvskqPnKNlsfa2iQBe9YXO7dTa3btmrWYRQ0/iEWWJv8l4h95gcO9ehIBhpSZRF6vL3nHI2xidvOqRs3nAT7ji6PE7NJTsDLGI6QndnoW0WtZZxNCTeETJ1IUnPb0XOk2Z%2Bh3t5i5mVQOcqNAj50g5Zra1lavhMzGI9e1vNa%2BK1Sxi6Ek8KpCpt/AgnmsDIQEM/H7mEtWoU38lk61UTnTlBFzo/kdJPyPL6MMptIl31RIKuvJs4Wr4SHxGtYWH4N8hWuuMTfbxjFFK%2Bu30JB61LcIJ9%2B0Gvw%2B99/Db8gsmMZnc2HFbjJSMcCxpeSgsSuRkQvC1nPkYKTcYXeSQgfuY68h%2BrK0/L5C5c/UkPIbcVl3JxBi9gwBZPbLilesSHbUMqyofXtAhiSv3H7f4q1hqsuqrWLwCrd6FnoIMXQ1PXQv3k241z73V4Lzlsv4t2IPKOiOU0MRjy8GmkFdwdsdDsNoeicAfGy7vHHRwvMYhwqsyD6r2ykPCKxUehFzZmHvrh3puudDV8NS1cP9aec1zb72YbKE%2B44I3O%2Bq1sqxOaxGD/r8CxO%2B568ZZob0ChBTkDUruWITahqgOvRLX6hQqjxv/eeAdidGrJwYcuwZfQwyU5co0W8r%2BcfDQ1fDQtfDQNfDa595GYD%2BzjSk3R9ciBiYJh444H8BKQqzcasihQYIcWl3snrprTRi8hTsDOtY%2BlloirxpjKJ9RQwzuiUAIwk/qhq6G%2B9fCUw/Jlj73VqLzVsv4pLBaonYtYtDEXi4BuNUBmi0X5PXfQP6jdPXUJ%2BZr9SjJiofIggnMmxjswcceawldDfeT0qlr4KXPvdXqvJXyEDSHm9wEZOjlqoPIuxYxHER4a/QvBEaunrTFfyXHH//5u1KPwU9ShraWQ1fDS66B1zz3dsxTRHeifB1WsdlVOjnm0TkS2Ueunrkcg%2BtFxHYl%2BHcel%2BXDS3RP8CmkoavhPvGEroFr7oJ2cs%2B9HcnwbU9MI4btjUmNRKNXz9yuhP7PUrp9mHt1u0YXK7shBIwYNjQYDaKMXj1ZoUMhhCuakgGewKpbaA34WJVGBIwYGoGzaobAnhEwYtjz6JpuhkAjAkYMjcBZNUNgzwgYMex5dE03Q6ARASOGRuCsmiGwZwSMGPY8uqabIdCIgBFDI3BWzRDYMwJGDHseXdPNEGhEwIihETirZgjsGQEjhj2PrulmCDQiYMTQCJxVMwT2jIARw55H13QzBBoRMGJoBM6qGQJ7RuAPczNJWsmunR0AAAAASUVORK5CYII=" data-latex="f'(0)=0,{^{lim}_{x\to 0}\frac {f'(x)} {sinx}}=-\frac {1} {2}">,则f(0)是f(x)的______
A:取得最大值
B:取得最小值
C:最大值
D:都不正确
<img class="kfformula" src="" data-latex="y=\frac {2x} {1+{x}^{2}}">的奇偶性。
A:奇函数
B:偶函数
C:非奇非偶
D:既是奇函数又是偶函数
若<img class="kfformula" src="%2BApxAAAHDUlEQVR4Xu1cPcxtQxRdrxaJRkQnoRaJAomEhI4IFUJHlH5aalo/LTqCiggd8nRER4voRNRqsuTMy2S%2BmTN7Zs7MmXPPOslL3v3u7Nl71t5rfvacu69BjxA4MQLXTjx2DV0IQARQEJwaARHg1O7X4EUAxcCpERABTu1%2BDV4EUAycGgER4NTu1%2BBFAMXAqREQAU7tfg1eBCiPgVcWkXeNomxvbWvs0tysxNY97TQPaOuGIkAZoo8BeBHAUwVinwP4AMDXBTJbNC21dS87txhrdR8iQBl0PwC4v0zk/9a1chWqbojU6KyRabFxd1kR4KoLOHN%2BBeALAE8CN14XeQbA04Wzv%2Buds%2BtnAD7t4PGYvSlbPwJwF4D7APwYIXNPOzsMvb1LEeAqhgyCuwG8DOBmL2hbgqOFPDkvx%2ByN2fo2gG%2B8rdi/AD4G8LynoKeduXHs8r0IcBV2BgZn/3Cfz7%2B34NUqnwqQmL0xXZz9/WDnofedyJh62blLgOeUtjg01/dRv2cAvAHgrWAArYHRKr9GgNDemC7%2B7dUgI5Vqd5q4GD1QHrK4/wwdMQNZXgfwhLc//jNYBVIBzJn1bwC3Avhp2Tp9CeC1jQkUYrRmb8zWMM2pFaBxSa8JWu4xP4noTTmjRkeLDIPqzQQuqW0Fx8MUJ7/nw9k41kePFSBlr0UX23AL1JuoLf7oLjt6BeBs%2BVwiwEiOHlmSEhDX7IsFFQ%2BWLoAcAR4PDs9OfyhPWa6EuefZFVxS9uYIQN13JDJaOdmcvYf6fjQBUgfMWUD7bdnOxHL9a4HhVrAwq%2BKPq0dgpezN2crgD2f%2BFFFn8U0XO/YggL//Zw6bM1y4KjCg6CS25b%2Bblj32A8sWyv9cczFVcqC0BAbTjrwzWJutexCg9MDucHXBH1t1e9i5FrwPArh3we59AB92ifREpyMJ4C5sfJ0uNReC7m4kwxUj3Ldu7Sz2lwpibhv4%2BDMnA%2BrX5eKM37mxcW/uZ5Fislv4OWVvTB/x5yWY/17SKDtTY%2BW9xO8AvlsmNr5mcrEEcHtenwAMoL8iB2OXsQgD3P8cI1RLUKUO6H6f4asCtIcO5PPzkgXi//8JAq3HKwY5e2O2xvDx/dHDTqtPiOVFEyC1X%2BUqwMe/pOHnMMMRZor4/QsA7rQinGkXI2gowjZ/FL7dGW47NjIXOXtLbe1lp3W8F08At18NZ0e3jN8WmTUJntvjc599u/eZhOJyGfZnBdy1c9uY95b%2BwguwsD8S1qU%2BLbrCG1iLzFqbEntLbN3aztJxnoIAXG5DoN22JvZ3/4YzPPA5OT8VWQo627MfZm94mZXKjNT020vmaPZacbh4AnDG5g0p30L08/3OoeGsurb/J6ip/qyAq91cCFw8AeaCW9bUIMCDt%2BXyLtY3J7%2B17aUIUOORBpmHGmTPJPr9oMGKAIOAdmoeHqzvqOquDzJcBBgEtNTMiYAIMKdfDmsVA4rPyNv%2BFrBEgBb0JHsFAUeALUmgQ7AC7VAI8F0bppeHvl9TiZBWgErg1sRyVRA6qJyqy61fFuw5OBFgY3QtVRA2Vjldd7MTgO9z8bV3VuHgT2X58JVoPi%2BNQPMoB6QYFrlKZtYqCCNwlo5JETgyATjD84fo4VukDmrOfpYqCJO6psmsewDcEvQwKp/fZPho4dEEsFZQsOLAIOdvcGN1N61VEKy6Yu1Kis%2B26MnJnrKwbQ4Uy/cjCeC/mutSdKkKChbb2cb9KCZWxyfsgzpjVRCsusJ2pcVna/VY5FLbwaPdBVjGummbkQSwVlBwtYNKB7pWa2itCkKpHtd%2Bz19PxWyO2cM06CMHugyr9UW13EgCOCMtFRSsA2JfrOHJf6ny4z1%2B6bRHDc1cSjdVu3T2TJDV113a7UEASwUF62DXzgDsw1IFwarLb9dSKLdGnyWlG5KSs/8vSyJgDz/XjHO4zEhgrBUUrCDkskCWKghWXbHzxEjsrCldf7Z3%2B/9vATxaO9BLlxvpRDrEUkHBijl/Eba29fHfhfH73GLMo7cV1pTuaLusvpq23RbBMO3gOhqWCrSt07z%2Bucmv56PCths5VwSoAzJGgB5p3pR1qZSuVoBCf4oAhYAtzWOBZk3zthbFVWHbOp9FpUSAOjDXZtot07yhdbmUrlaAQn%2BKAIWArawArqct07y%2BdZaUrghQ6E8RoBCwpXlLodwajZaUbq8CvDX2HkZGBKh3VW2h3BqNlpTubK9m1IxzuIwIUA95afHZek15ydzZIN/DSVuIAG2OLyk%2B26ZpXXrvwrY9x9a1bxGgK7zqfHYERIDZPST7uiIgAnSFV53PjoAIMLuHZF9XBESArvCq89kREAFm95Ds64qACNAVXnU%2BOwIiwOwekn1dERABusKrzmdHQASY3UOyrysCIkBXeNX57AiIALN7SPZ1ReA/sbm5U0yJUpEAAAAASUVORK5CYII=" data-latex="{^{lim}_{x\to 2}\frac {f(x)-f(2)} {{(x-2)}^{\frac {7} {3}}}}=1">则函数f(x)在x=2处
A:A
B:B
C:C
D:D
<img class="kfformula" src="" data-latex="{({e}^{{-x}^{2}})}^{''}=">________
A:<img class="kfformula" src="" data-latex="{e}^{{-x}^{2}}">
B:<img class="kfformula" src="" data-latex="{-(2x)}^{2}{e}^{{-x}^{2}}">
C:<img class="kfformula" src="" data-latex="4{x}^{2}{e}^{{-x}^{2}}">
D:<img class="kfformula" src="" data-latex="(-2+4{x}^{2}){e}^{{-x}^{2}}">
无穷小量的代数和是无穷小量。
A:错误
B:正确
若<img class="kfformula" src="" data-latex="f(x)\geq g(x)">,则<img class="kfformula" src="" data-latex="{f}^{'}(x)\geq {g}^{'}(x)">
A:错误
B:正确
α~β、β~Υ,则α~Υ
A:错误
B:正确
若一个函数在某点的左右极限存在且相等(设值为A),则此函数在该点的极限也存在,但是不一定为A
A:错误
B:正确
设<img class="kfformula" src="" data-latex="f(t)">是连续函数,且为奇函数,则<img class="kfformula" src="" data-latex="\int ^{x}_{0} {f(t)dt}">也是奇函数。()
A:错误
B:正确
若<img class="kfformula" src="" data-latex="{x}_{0}">为f(x)的拐点,则必定有<img class="kfformula" src="" data-latex="{f}^{''}({x}_{0})=0">
A:错误
B:正确
y=xcosx+sinx是奇函数
A:错误
B:正确
设数列{<img class="kfformula" src="" data-latex="{x}_{n}">}有界,又<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }{y}_{n}=0}">,则<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }{x}_{n}{y}_{n}}=0"> ( )
A:错误
B:正确
<img class="kfformula" src="" data-latex="y=\frac {x} {{x}^{2}+1}的极大值点是x=1"> ( )
A:错误
B:正确
若一个函数在某点的左右极限存在且相等(设置为A),则函数在该点的极限也存在,且为A ( )
A:错误
B:正确
|
|