|

 函数<img class="kfformula" src="%2BwvQxTHv7cWoaEW1KKRi4gIGvEIFUIohNIjVERJRdB6FIS4Ku9oEIUE0YgaUdNQqMmHmWRMdnceO7OP355tbv6/nTlzzvd8Z%2BbM2TP3jOwxBA6CwJmD2GlmGgIyshsJDoOAkf0wrjZDjezGgcMgYGQ/jKvNUCO7ceAwCBjZD%2BNqM9TIbhw4DAJG9sO42gw1shsHDoOAkf0wrh419G8p%2B%2BNiSdvNIWtk35xLqhX6VtJZSY9LeqVASgmBS9oWqLBMUyP7MjgvMco9kt4tWKW9TiUELmm7hM1FYxjZi%2BDadOO3Jd1nZB/30Z7Ifp2kWyQ904Byz0n6TNLXDWRtRQSr7geS7ipUqGS1LmlbqEb/5nshO0R/ssKRYwh6eS%2BeEOEhYhivPybpEvcbv58n6SJJ10i6OgAmJDC7w%2B%2Bu3feSHpX0kaQnXHsje/85KZzwiaRzDccixr1N0v0NZa4l6laHT7h4cWCF1PGKHxPW/w3GxPyfuj7Ywi7KLujlGtkbePhVt5qwqvwq6flA5kOOlKXbc45a7zuSvJHTeMNtXnIreEh2VnayMiFBhyaFf4%2BMcAXHXBaD84NFxsg%2BkwSsHKyyl0mCfHdGhyx%2Be6/xqu5VZty7G4ZHM6Go7v6zCz/C8ARhT0crc/w3bWICM0lelvTOwK5nZK920X8dAfA1SY9Iwmk/BuQjtn7TTYSZw4x2Z8wHdx67gyEhx19Rjp1QhsdPAmxlFwvbxQT2C869AwuMkX0GC31ueOxDCKvMVZ3jamJVDmMlH2JmmNylaxh3h2cQPwl8WDgWshD%2BgPVPLqxDSR8SsRvE/bsY0Vvo2tkYQhjAJDbkYBQ/SxBxiQnV24%2Bs2GRNvotW43glHmrn2/DvL05RdlcWAJ6pXaC3XU3lr032oRg9NJBtmBCn5wGSA/DDUTquKcgbF1YSmpS03ZzZa5M9jiljgHLBJbZ/wHW%2BVNLHLixh1b7Y1Yx8GWV5wrFyx9mcAxsoVGJ7SdsGqrUVsQbZSX8968ygcImH7ZeHLECYS88Flx3CfyDy6TXOAcSghEefS7pp4lN67jht0d%2BGtBLbS9puw7pAizXI7of3h1OyCGFevXTFJUf/YRTz45QwdUas%2Bs3EQXfMiejIpKl5iKHH7KqRZ31mIrAm2X3OdyjF5c3KWUkgO2nLeBJNyY1hyxlnJtS6UtIFc4WccP8/Jf3Q0741yZ5TpVdDQp/hKbGtZpxSv0D2C0s7Haj9H6dM9tThFD/XfPAhPue5OZMoHG5fOHA2JhOm/TcrWf1aWxvH1UPyIS7FSSWpx/hDSkpvUo%2BEPLmTIyWv1XsySTe48gkO7r5upZX8w8lZi%2Bw5h1OcQTxOcVhuDTvEfX3gI1Uc14eOJuyh9DWM%2B8P4f60DKhkmX/y2RJh18uRfi%2Bw5h1PATxVqEfdTn00RGc/QOYBU5LUTE6ZnodkcAoUEN7LPQdL1XYvsOYdTbx5xuydzbDIkIEdPoROx9/Wuys%2BXH%2BRc%2BpiS3wDi2SJ8FWILXzHxCdf8BY073AWNoVKN2YoPCMDvl7uPfN5vPcYZlNkCwBplcw6nXi4hSFzj7t%2BxQ9zoCE9dB7E95Lg9qPN4a6Kikf7c5hkKYWrsat2n9hL1mB6QLSwUGyr5bW2Dl0e9PGcwP7FyzmxNdVmL7Bjqy3pTBvXMljDpntpoea//oMWu5S9ipLBKvQf3uMK0VYjkb0blTrSWO1bK7n/fr0F2v1qVfPTxNS65B9Uc4zmY/rbh0l5IGD4tfBVPmpYre2rS9JxoOf5ejOwcAq9wsTcko04lvlWTUphwhmKuFvdQmXCEP2uGL6nLzSk85r6H6GSvuFQdxuy1eqXIHk%2B0k13ZAeILdzjiQMgKXUPaqRRiifNbySkZM2ybc7m5VnaqHxOdylAeLsaEd3vn6JUie6wX7Rf9ftBia0yBy3t/ECSf/dWGQ4ccW1q0ybncPDWOv2Cd0iUVKsaJgjl6lZCdcUgM9LhEP4rJUmRPOeWo76cuN/fAJDdmT%2BnlY/2UjkPpRf//2Sz%2BRdjInnJX3/dTl5t7jBwfEscOqDV65azsMdEJqWrC2SpsjOxVsM3ulHO5efYgAwLiPDthDKGl/2g3R68U2fmgxQel8GJ7eJm7h73/k2lk7w7x4AAQI3W5uYdm4S0x5IdE5%2B85eqXIHqdSvX2LcXCxgXp4zmRuCoEU2VdX1si%2BugtORoFFQ5Ia1IzsNahZn10iYGTfpdtM6RoEjOw1qFmfXSJgZN%2Bl20zpGgSM7DWoWZ9dImBk36XbTOkaBIzsNahZn10iYGTfpdtM6RoEjOw1qFmfXSJgZN%2Bl20zpGgSM7DWoWZ9dIvAPvp5wSawSNBsAAAAASUVORK5CYII=" data-latex="f(x)=\frac {ln\left | {x} \right |} {{x}^{2}-3x%2B2}">的所有无穷间断点为
A:<img class="kfformula" src="" data-latex="x=0">
B:<img class="kfformula" src="" data-latex="{x}_{1}=0,{x}_{2}=2" width="166" height="44" style="width: 166px; height: 44px;">
C:<img class="kfformula" src="" data-latex="{x}_{1}{=0,\, x}_{2}{=1,\, x}_{3}=2">
D:<img class="kfformula" src="" data-latex="{x}_{1}=2,\, {x}_{2}=1">
设<img class="kfformula" src="" data-latex="x\to 0">时,<img class="kfformula" src="" data-latex="x+{x}^{2}与ln(1+{x}^{k})">是等价无穷小,则k=
A:1
B:2
C:3
D:0
函数<img class="kfformula" src="" data-latex="f(x)={x}^{2}-2x-3"> x∈[-1,3]在给定区间上满足罗尔定理的数值ζ=( )
A:0
B:1
C:2
D:3
若变量<img class="kfformula" src="%2BCAYAAAAxrhmWAAAEKklEQVR4Xu2bPasWMRCFz/0Bgo1gKfojFGzstdBOwcLC2o/WD7C5ln78AwtFrRTRXjvFRqxV7G0sFOyUkV1478tuMtmdzGb2noWLyOZNTs48STbZnR3wogPODuw4t8fm6AAIHSFwd4DQuVvOBgkdGXB3gNC5W84GCR0ZcHeA0LlbzgYJHRlwd4DQuVvOBgkdGXB3gNC5W84GCV2agasATgE4C%2BABgOtEZr4DhC7t4QsA57oifwG%2BNpyPHE3MebgJmjV0XwEcywlY433OdLqoyjIry6uFX6cB3AZw3Kg%2BXQ8aKmVhYkPdqSLlPICnhoDIkv3cuM4qHa9VKaFLOyvAXQNwAoDMdg8NA2G9XBtKq1vVfofuMYAfAA4B%2BAjgCoBXG7tUAWPzsvSL0NVlu8naBThZNt8A6OG6CWDXcClNdZzQNYlFXVH3B2a0MwAOAHimaFp%2BL0tv7rowUh%2Bhyzm34vv9zvQJgIuO/SR0jma31pTsJuWNw9iMVEsvoavlbMP1ygz3BcDrTmO/SbgB4K6DbkLnYHJrTUjQv3WiPne7V/nvb%2BOjke1%2Bv%2B92y0cBfOjA91zWF4%2BD5RHA4p2hgBgOELoYcVqVSkK3qnDG6AyhixGnVan0gE4%2BgpQ/XnEceAtA/qpcHtBVEc5K4zpA6JaL3UEAJwH8Wk7CYMvvaushdLUdHq9f3tseBvBnOQmDLd%2Bpradl6Fo7sbfWI8GtHuDaAE2pv1XorAM8xZuh31jqKoFuVVlpLUJnGdipsKWSZiz09bt57Q5xVVlphG4vlpqkGQvo5HlOEn2016qy0lqDziKg2kAOldMmzczVWbK0bupcRVYaoRtGNAdV7n4KfDkquVQ400l9pVlp8jWLJBSNXdoBNmcQD/42InS5ZBoLk3JQ5e6nNMgHo98BfCoQOiUrTatRW65AbrpoNOi8kmlygcjdT7k%2B9jyXGkxTstK0GrXl9i102mSa2kkzcwI19DxXYzBpNWrL7Vvo%2Bo7XTqbJBSJ3fyxAR7qPHx5tFdAOppLAazVqy5W0nSzb2vIqYjUm1E6mSWnQ6Ns0XWY2OR752W0g5GxOnumGrqmDSfI6JF83d8nn8dubi9L%2B5NrI3o8GnVcyjRV0slPtD4Jfdq%2B9Uq%2B%2BLAeTFiZtuSxM2gItQpea7cSgmsk0uaSZqQGSmU42EGPnczUGk1artpyWqWy5VqHTLrPZDhoWmBMcgU1mOnmmk3%2B3rxqDKac3N8AMrdtbVcvQVev0AhXLYbCkHN7rnu08JOSg89Aw2Aah87FeZrhbAC77NPe/Fa%2Bk8eIuEbpiyyb/QGa77aOSyZVF/iGhixy9oNoJXdDARZZN6CJHL6h2Qhc0cJFlE7rI0QuqndAFDVxk2YQucvSCaid0QQMXWTahixy9oNoJXdDARZZN6CJHL6h2Qhc0cJFl/wNXY9A/A9MeHAAAAABJRU5ErkJggg==" data-latex="\frac {{x}^{2}-1} {(x-1)\sqrt {{x}^{2}%2B1}}">为无穷小量,则x的变化趋势是_____________
A:<img class="kfformula" src="" data-latex="(x\to 0)">
B:<img class="kfformula" src="" data-latex="(x\to 1)">
C:<img class="kfformula" src="" data-latex="(x\to -1)">
D:<img class="kfformula" src="" data-latex="(x\to \infty )">
<img class="kfformula" src="" data-latex="({e}^{x})''">=( )
A:<img class="kfformula" src="" data-latex="{e}^{x}+c">
B:<img class="kfformula" src="" data-latex="x{e}^{x}">
C:<img class="kfformula" src="" data-latex="{e}^{x}+x">
D:<img class="kfformula" src="" data-latex="{e}^{x}">
设函数<img class="kfformula" src="%2BQxDGn39Ljdatk2hEXIIIGkFQIYTCJTqEipqKuFTiT0EIKvdo3BISRKV3q6lpyS85I2vtec/unj37nvOdOc13eXfnzDzz7OzszL6n5I8jsCMETu3IVjfVEZAT3kmwKwSc8LtytxvrhHcO7AoBJ/yu3O3GOuGdA7tCwAm/K3e7sU5458CuEHDC78rdbqwT3jmwKwSc8LtytxvrhHcO7AoBJ/x63H2VpBslPdVQpTclXSjpMknfS7q8oey5op6W9Kmkb%2BYKKpnvhC9Ba7mxkP1xSbc3fMXzkj6T9Mkg829Jb0m6p%2BE75ogym5/rSXon/ByXtZtLJP5Y0jvtRAqZIbkfkfSCtKoLg3dKurnnInTCN2RYpaj7B6e3jO6oQkR/VNKLgV78b20%2Bf29Y7K9V4lc0bW3GFyl/pMGkCedJuqDR%2B3H4u42jO6oR0UOy94zwpCuXSLpL0mlJh8hMlL%2BjcTo36honfDlrf5b0baNtGGK83nDxHLKG6E5K81i5yUUzCAi/SPpC0tuSHpggPMLB9L4eubwTvsiXzQcTdS9ttHgOKccB9txeUTRKoXIIz3njh2hHag42Ap3wi8CaLbSHo1lUkH3pyJ4yml0lh/C9Fr4TPpuaywz8LiPHnfPmmOzkyy0rQVO65RKeg/uDPfoEPSO8laDOHLavZyK0nhwi0UNTKDb%2B3PRC7F%2BSzkiUCCHORZLOkvRVYuslUttDKZDc/OFAHs0f8ueYbCVVE2TeO7zkfEkfDXqg29lDc4m82XC9aWg6hQdXMI5xbwznf8TlEp5JJVhU69yL8IB/qyTIzGp%2BNZFOYfD7nfNMyE7p7ongwBQ3gdD9yqEDmqp0QKIfhwYPNkAoFsYbgUwWxBWJw2mJk6nmWJMGnajbo/tPw7s5LF4f4Irs1NPL50binJTmxBH%2BlYAA/M72FQJvDqStHkcgI2XNqv5wIqJBEouUJp%2BWNyQ2/dDXdh1Id1ukO%2BPR22ygQhFXHFI2lziZ%2BR8EXVObG3ZOW1aParCek8OXYDFLt16r3UiBsinHQDDG0HWzVvgswzInW0QO768QxXksFTDdifxfJ9rzVu%2B26B83e5CVWiglTg4XHfMIApT8qHP3zMkzYf132G5TGkPAomC8zY0RohTg0vEcGrlYRVSmtv7lgZrx1KIkbbl7pPI1lq6VpDShbfEuVGp3ON4Wao2MqQC1e8KPOeoY%2BTsOtnydNMWeVFplOxM/xzqs7Fy/SrohYo5F45Tc2oYLqRhP/K4a0i45J5fw%2BOHZk1alAVgiKk94TfVQ/r6kM2LZ6PGSJCogcao3paOlO5w/4uu9FvmvTnQSIS6pSek9Eog0tjB7Yjb1rlzCU8ggPVt8AffK4Q0YAOBuRVh6tFRhLB9d4tBKTkxFI47WYxWkFGnDc4mlBSkbsPnzwJnhPPT4o/AOvOkYpxNxnj9Fxh6f5xIeTKhsLV6SXgPhj5G/xyQ057P4aPXHNxfjlAvSnRNUgMbyd0tn7MxitXRzbM7FqbikmXpXWDrtQeTcd%2BQSfqkLdP/TszfhSWmoG9s9bYvuYQTMBXPOuLCmbXJSNflwZzLSMo7fw%2B13Kn83nCHry1Fqw9xDNy8hjX1biQVzTVTRWuLLI3OwDefmEn4Kg1b6dL9aYKSC9HQ12c6t%2B9fyq21TAIVdSxuLLmNfOSNluXbQl/FhU4m/U3fPTa51Yekwp64Bk4r8dqBfAD7XDaSnmkS%2Bjz63DNWllD5T9i/5uXXMLx4qYLyLNJYnlbJ07bD3jvAx0FOlviUdsxbZ3SoUazE40oNdP%2Bx0L6pmT8KnDorHKkcuCmqFcLsP03OXq1Cz%2BRQOq7/3uBZsmvckfKpaQYRPleuaI7sBgQQELn%2BtuXPaEkbSW1K1xSszodI9CR9%2BqXgrrfGWDs6RtcbSYo7eNWOOYmtPwlsJ7s8BHRouPe/N1DjF55wwBHoS/oRB5%2BZsEQEn/Ba95jpXI%2BCEr4bOJ24RASf8Fr3mOlcj4ISvhs4nbhEBJ/wWveY6VyPghK%2BGziduEQEn/Ba95jpXI%2BCEr4bOJ24RASf8Fr3mOlcj4ISvhs4nbhGBfwCXaExBa0OE6QAAAABJRU5ErkJggg==" data-latex="y=sin({x}^{2}-1)">则dy=( )
A:<img class="kfformula" src="" data-latex="cox({x}^{2}-1)dx">
B:<img class="kfformula" src="" data-latex="-cos({x}^{2}-1)dx">
C:<img class="kfformula" src="" data-latex="2xcox({x}^{2}-1)dx">
D:<img class="kfformula" src="" data-latex="-2xcox({x}^{2}-1)dx">
极限<img class="kfformula" src="" data-latex="{^{lim}_{x\to \infty }\frac {ln(1+{e}^{x})} {x}}=">_________________
A:0
B:1
C:2
D:3
设函数<img class="kfformula" src="" data-latex="f(x)">的定义域为<img class="kfformula" src="" data-latex="(-\infty ,+\infty ),">则函数<img class="kfformula" src="" data-latex="f(x)-f(-x)">的图形关于()对称
A:<img class="kfformula" src="" data-latex="y=x">
B:<img class="kfformula" src="" data-latex="x">轴
C:<img class="kfformula" src="" data-latex="y">轴
D: 坐标原点
若函数y=f(x) 在<img class="kfformula" src="%2B2XPS8FQRSGn/sjqIXOH/ARUaDzkegI0Ui0JDpqOgmt0AihE0EnKomIXoU/4EeQk8xNxube/Ti52RH7Tje7527OPvvMO3NbaHQl0BKb7gQEJ8cOwREcX3jIHJkjc3wEZI6PmzJH5sgcHwGZ4%2BOmzJE5MsdHQOb4uClz/pg5E8Ba6GkQuAWOgE2gHxgBHoF93/fu3a9SmHMNHABPwCxwB2wB78A98ABMAyl6%2B0W27gaOgZsAod3IN3ABrIYLH8BzNO%2BdChWflALORtTjEnAJLANXOb2fA1/hfl9d4OqGk33/PWCnYAnZ/eEIiIF6qyOTUsOxfLExk2ONLTvLJAttGxbch3VkUmo49uK7BRZYTbbPTtcqJkpxeUo468AJMJcJaAvtOJcaAceyYgwYCt/M5isZK2xrHw82xbvZvzfHDHgBRgE7CE4CFshtc%2BzaNrCYEb4R5tiuMxUAfQKnIVznAZvbOAuHw5hPI%2BAUJ2DnisbuVmWAmXELYTlavf39eG3COacMnBiInY4HOuRS2edUqku5lVdqNEWx4ORQFxzB8S1KmSNzZI6PgMzxcVPmyByZ4yMgc3zclDk53H4AqhZCLnQeOQQAAAAASUVORK5CYII=" data-latex="{x}_{0}">点可导,则下列式子中( )是错误的。
A:<img class="kfformula" src="" data-latex="{^{lim}_{\Delta x\to 0}\frac {f({x}_{0}-\Delta x)-f({x}_{0})} {\Delta x}}=f'({x}_{0})">
B:<img class="kfformula" src="" data-latex="{^{lim}_{\Delta x\to 0}\frac {f({x}_{0}+\Delta x)-f({x}_{0}-\Delta x)} {\Delta x}=2f'({x}_{0})}">
C:<img class="kfformula" src="" data-latex="{^{lim}_{x\to {x}_{0}}\frac {f(x)-f({x}_{0})} {x-{x}_{0}}=f'({x}_{0})}">
D:<img class="kfformula" src="" data-latex="{^{lim}_{t\to 0}\frac {f(x+t)-f(t)} {t}=f'(x)}">
已知<img class="kfformula" src="" data-latex="f'(1)=2">,则<img class="kfformula" src="" data-latex="{^{lim}_{\Delta x\to 0}\frac {f(1+2\Delta x)-f(1)} {\Delta x}}">=( )
A:-2
B:0
C:2
D:4
函数<img class="kfformula" src="" data-latex="y=\sqrt {4-x}+sin\sqrt {x}">的定义域是
A:<img class="kfformula" src="" data-latex="0<x\leq 4">
B:<img class="kfformula" src="" data-latex="0\leq x\leq 4">
C: 0<x<4
D:<img class="kfformula" src="" data-latex="0\leq x<4">
<img alt="" src="http://file.open.com.cn/Lms/ItemDBAttachments/image/singleselect/shuxfxfs/20061012/18130a22.JPG" />
A:A
B:B
C:C
D:D
<img class="kfformula" src="" data-latex="f(x)={x}^{3}-3x">单调递减区间为( )
A:<img class="kfformula" src="" data-latex="(-\infty ,+\infty )">
B:(-1,1)
C:<img class="kfformula" src="" data-latex="(1,+\infty )">
D:<img class="kfformula" src="" data-latex="(-\infty ,-1)">
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {sin3x} {x}}=(\, \, )">
A:0
B:<img class="kfformula" src="" data-latex="\frac {1} {3}">
C:1
D:3
<font face="Arial">函数<img class="kfformula" src="" data-latex="y=sinx-sin\left | {x} \right |">的值域是()</font>
A:(0)
B:[-1,1]
C:[0,1]
D:[-2,2]
设F(x)是f(x)的一个原函数,则等式( )成立。
A:<img class="kfformula" src="" data-latex="\frac {d} {dx}(\int {f(x)dx})=F(x)">
B:<img class="kfformula" src="" data-latex="\int {{F}^{'}}(x)dx=f(x)+c">
C:<img class="kfformula" src="" data-latex="\int {{F}^{'}}(x)dx=F(x)">
D:<img class="kfformula" src="" data-latex="\frac {d} {dx}(\int {f(x)dx})=f(x)">
若函数f(x)的导函数是sinx,则f(x)的一个原函数为( )
A:1+sinx
B:1-sinx
C:1+cosx
D:1-cosx
函数<img class="kfformula" src="" data-latex="y={x}^{2}+2x-3">的单调减少区间是( )
A:<img class="kfformula" src="" data-latex="(-1,+\infty )">
B: (-1,0)
C:<img class="kfformula" src="" data-latex="(0,+\infty )">
D:<img class="kfformula" src="" data-latex="(-\infty ,-1)">
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {{x}^{2}sin\frac {1} {x}} {sinx}}=">
A:1
B:<img class="kfformula" src="" data-latex="\infty ">
C:不存在
D:0
函数<img class="kfformula" src="" data-latex="f(x)=x\frac {{a}^{x}-1} {{a}^{x}+1}">(a>0,a≠1)
A:是奇函数
B:是偶函数
C:既奇函数又是偶函数
D:是非奇非偶函数<br>
设<img class="kfformula" src="" data-latex="\int {f(x)dx=xlnx+c}">,则f(x)=( )
A:lnx+1
B:lnx
C:x
D:xlnx
曲线<img class="kfformula" src="" data-latex="y={x}^{3}">的拐点坐标是( )
A:(0,0)
B:(0,1)
C:(1,0)
D:(1,1)
<img class="kfformula" src="" data-latex="y=f(x)={x}^{3}+1">的奇偶性。 ( )
A:奇函数
B:偶函数
C:非奇非偶函数
D:既是奇函数又是偶函数
在下列等式中,正确的结果是
A:<img class="kfformula" src="" data-latex="\int {{f}^{'}}(x)dx=f(x)">
B:<img class="kfformula" src="" data-latex="\int {df(x)=f(x)}">
C:<img class="kfformula" src="" data-latex="\frac {d} {dx}\int {f(x)}dx=f(x)">
D:<img class="kfformula" src="" data-latex="d\int {f(x)dx=f(x)}">
设函数<img class="kfformula" src="" data-latex="f(x)={x}^{3}-{x}^{2}-1">,则f[f(1)]=_________
A:-1
B:-3
C:0
D:1
设<img class="kfformula" src="" data-latex="I=\int {\frac {{e}^{x}-1} {{e}^{x}+1}}dx">,则I=
A:<img class="kfformula" src="" data-latex="ln({e}^{x}+1)+C">
B:<img class="kfformula" src="" data-latex="ln({e}^{x}-1)+C">
C:<img class="kfformula" src="" data-latex="x-2ln({e}^{x}+1)+C">
D:<img class="kfformula" src="" data-latex="-x+2ln({e}^{x}+1)+C">
<img class="kfformula" src="" data-latex="\int ^{1}_{-1} {({x}^{3}cosx+x)dx}">=( )
A:-2
B:0
C:2
D:4
<img class="kfformula" src="" data-latex="y=\sqrt {1-{x}^{2}}">的奇偶性
A:奇函数
B:偶函数
C:非奇非偶函数
D:既是奇函数又是偶函数
设函数f(x)在x=0的某邻域内可导,<img class="kfformula" src="%2B1k6%2B5Hu/dy5r/WfWf9Zac/nOEPsMAUPAEPAQOMMQMQQMAUPAR8CIweaEIWAI/A0BIwabFIaAIWDEYHPAEDAE8giYx5DHyEoYAieHgBHDyQ25KWwI5BEwYshjZCUMgZNDwIjh5IbcFDYE8ggYMeQxshKGwMkhYMRwckNuChsCeQSMGPIYWYl1EXhg6e65im6pU1O%2BounTLGrEcJrjvlWtbxSRe0Tk1koB3xCRl0Tk7cp6VjyCgBGDTY3ZCPwuIjoPPxGRyxoF6qnb2OV%2Bqxkx7Hdst6QZnsBbIvKmiNziEMG/ROS15Wf%2BfluDt6B64jW8LiL/25LixyqLEcOxjtxxyY3RXiwi94vIPxzjfUVEvhSRJ0Wk17B7iWWriH4tIhesLZwRw9qIn2Z/hAt4C37u4BkReWiBxA0pWlEa0UZr36Pr4WU9LiKXOh7W6D6i7e2BGK4QkRtE5LFG1J4QkXdE5OPG%2BlYtjwAGy/jgGcS%2BEUY9oo28NuuUUA9KQ611el16OXZigBQe7ohLgUHbePpIyYGkG6vKgxvcsntURG5e5PtURL5PjFXMqAk3fhKRs0TksyUc%2Bb/jabgGsydiUL2m6HQMxECM9UVkQjFpSGr1JpyIT28SkTtWpeUxnbkJPLdF9vafneGGempBDnhlubkWMgDGlxWTbUh%2Bz4fnEWtvihGNGcaDelLVIuYGq7rBxgovLCsCK8O3jsup2ewXReQ%2Br%2B27F2Ou3fOOiYjrBsm83KjDrGoYz78jhgdp9JJmr14p%2BXKrvZ%2BDoDwE7iYwc230yj%2B7/hSy2wIxwP5MYDKvGKe7naWrzZUBNz%2BXxVbigGz4cEVThj8rq10rpz9RY4m92RNa%2B8fjYwxy5xNSBqDez6sZr26KER0Y6Ck6bYEYUFw9Aj9swPiZVL63QF7gP4ltHAjlkkD4QXvEqbEkGP3ftWKuoVVOf5V08wt4WbcHvAiM67wlF0H5MxeyvHxx192fc0ZcYwsliUfaSxmALhjolfKAphhRDRgNZafoNJsYND6OJc5ihsokx/BDOQFI4yMRCXkZ%2Bjvc0dDxWdxeiGONc/c9cur80lDLHUd0ABd/QunJQN/D4GdyESO3DX3iyhk05Qkb%2BFQO/s44f7V4evysekKoPrmH6jfY4eaqnCQxEEYwyDFDjV2OSRkwbV6XcF0xkPci25spwhk9Y3rkVFkwBkjVJQZ0%2BME5UahlFUt/ork/h4imR%2B9YYjTWpn%2BsGdm%2BWQqTgIa0%2BX4NkPdej0SfJDH4OYXSScgkIPwIJQrfFZGfE9ti9Eny6vpAZ8T79xbEw6Vypsr1yJmL3yFOPt%2Bj8ncI/J0Lfg8Go07ahYgrhQnlST7XemwaJrnexogxmtkGc5y82PkiwlYvntNqu2azQwmU56uNaVMsSpusLn5eQgeZHRA8itjkX4uhe%2BVEH43f/RWUf8d9P8czMh9vSPJcB39CN8g2tCLXGImGAM8v7aUONvntuluUpX1q%2BFRa3splEJhBDHrUE9E4mMMHI/IR65Zsr6WM101mhtSHGPAKYrqvRQy9cioxoIdvGKpD6N/dE4h%2BYlDruduELUZEO%2BwgkDje0yregsVR1plBDAqUxp%2B5o7IhYGcQA/ISz7d8nNTzV80RxMAKT9sQq0uoaph6OEhlTuUXKBNrr0XnrdUZPX5b02%2BoPDOJQePdkoy1r/QMYhgK/BIGhA5uaT85z2a0PNbefATYTv5noRgfFpZrKjaTGEpPxG3FY2gCOFFphMcwWqbe9q7ubWBg/e%2BWRObAJoNNaQK3pR9/Nw5i4E/J90FJodYyM4mhNfGoLm/sIBLuMNuRLclHzhY81ZAMbcG/R86W/taoc80anRT2we4Gf%2BxrQGAmMWgc3LIFw1Yf8XNouxLC%2BSWyHQlE1OWLbVcS2oR%2B1wBvskqPnKNlsfa2iQBe9YXO7dTa3btmrWYRQ0/iEWWJv8l4h95gcO9ehIBhpSZRF6vL3nHI2xidvOqRs3nAT7ji6PE7NJTsDLGI6QndnoW0WtZZxNCTeETJ1IUnPb0XOk2Z%2Bh3t5i5mVQOcqNAj50g5Zra1lavhMzGI9e1vNa%2BK1Sxi6Ek8KpCpt/AgnmsDIQEM/H7mEtWoU38lk61UTnTlBFzo/kdJPyPL6MMptIl31RIKuvJs4Wr4SHxGtYWH4N8hWuuMTfbxjFFK%2Bu30JB61LcIJ9%2B0Gvw%2B99/Db8gsmMZnc2HFbjJSMcCxpeSgsSuRkQvC1nPkYKTcYXeSQgfuY68h%2BrK0/L5C5c/UkPIbcVl3JxBi9gwBZPbLilesSHbUMqyofXtAhiSv3H7f4q1hqsuqrWLwCrd6FnoIMXQ1PXQv3k241z73V4Lzlsv4t2IPKOiOU0MRjy8GmkFdwdsdDsNoeicAfGy7vHHRwvMYhwqsyD6r2ykPCKxUehFzZmHvrh3puudDV8NS1cP9aec1zb72YbKE%2B44I3O%2Bq1sqxOaxGD/r8CxO%2B568ZZob0ChBTkDUruWITahqgOvRLX6hQqjxv/eeAdidGrJwYcuwZfQwyU5co0W8r%2BcfDQ1fDQtfDQNfDa595GYD%2BzjSk3R9ciBiYJh444H8BKQqzcasihQYIcWl3snrprTRi8hTsDOtY%2BlloirxpjKJ9RQwzuiUAIwk/qhq6G%2B9fCUw/Jlj73VqLzVsv4pLBaonYtYtDEXi4BuNUBmi0X5PXfQP6jdPXUJ%2BZr9SjJiofIggnMmxjswcceawldDfeT0qlr4KXPvdXqvJXyEDSHm9wEZOjlqoPIuxYxHER4a/QvBEaunrTFfyXHH//5u1KPwU9ShraWQ1fDS66B1zz3dsxTRHeifB1WsdlVOjnm0TkS2Ueunrkcg%2BtFxHYl%2BHcel%2BXDS3RP8CmkoavhPvGEroFr7oJ2cs%2B9HcnwbU9MI4btjUmNRKNXz9yuhP7PUrp9mHt1u0YXK7shBIwYNjQYDaKMXj1ZoUMhhCuakgGewKpbaA34WJVGBIwYGoGzaobAnhEwYtjz6JpuhkAjAkYMjcBZNUNgzwgYMex5dE03Q6ARASOGRuCsmiGwZwSMGPY8uqabIdCIgBFDI3BWzRDYMwJGDHseXdPNEGhEwIihETirZgjsGQEjhj2PrulmCDQiYMTQCJxVMwT2jIARw55H13QzBBoRMGJoBM6qGQJ7RuAPczNJWsmunR0AAAAASUVORK5CYII=" data-latex="f'(0)=0,{^{lim}_{x\to 0}\frac {f'(x)} {sinx}}=-\frac {1} {2}">,则f(0)是f(x)的______
A:取得最大值
B:取得最小值
C:最大值
D:都不正确
曲线<img class="kfformula" src="" data-latex="y=\sqrt {x}">在(4,2)处的切线方程为( )
A:<img class="kfformula" src="" data-latex="y-2=\frac {1} {4}(x-4)">
B:<img class="kfformula" src="" data-latex="y-2=\frac {1} {8}(x-4)">
C:<img class="kfformula" src="" data-latex="y-2=-\frac {1} {4}(x-4)">
D:<img class="kfformula" src="" data-latex="y-2=2(x-4)">
设函数f(x)的定义域是全体实数,则函数f(x)f(-x)是( )
A:单调减函数
B:有界函数
C:偶函数
D:周期函数
若<img class="kfformula" src="%2BApxAAAHDUlEQVR4Xu1cPcxtQxRdrxaJRkQnoRaJAomEhI4IFUJHlH5aalo/LTqCiggd8nRER4voRNRqsuTMy2S%2BmTN7Zs7MmXPPOslL3v3u7Nl71t5rfvacu69BjxA4MQLXTjx2DV0IQARQEJwaARHg1O7X4EUAxcCpERABTu1%2BDV4EUAycGgER4NTu1%2BBFAMXAqREQAU7tfg1eBCiPgVcWkXeNomxvbWvs0tysxNY97TQPaOuGIkAZoo8BeBHAUwVinwP4AMDXBTJbNC21dS87txhrdR8iQBl0PwC4v0zk/9a1chWqbojU6KyRabFxd1kR4KoLOHN%2BBeALAE8CN14XeQbA04Wzv%2Buds%2BtnAD7t4PGYvSlbPwJwF4D7APwYIXNPOzsMvb1LEeAqhgyCuwG8DOBmL2hbgqOFPDkvx%2ByN2fo2gG%2B8rdi/AD4G8LynoKeduXHs8r0IcBV2BgZn/3Cfz7%2B34NUqnwqQmL0xXZz9/WDnofedyJh62blLgOeUtjg01/dRv2cAvAHgrWAArYHRKr9GgNDemC7%2B7dUgI5Vqd5q4GD1QHrK4/wwdMQNZXgfwhLc//jNYBVIBzJn1bwC3Avhp2Tp9CeC1jQkUYrRmb8zWMM2pFaBxSa8JWu4xP4noTTmjRkeLDIPqzQQuqW0Fx8MUJ7/nw9k41kePFSBlr0UX23AL1JuoLf7oLjt6BeBs%2BVwiwEiOHlmSEhDX7IsFFQ%2BWLoAcAR4PDs9OfyhPWa6EuefZFVxS9uYIQN13JDJaOdmcvYf6fjQBUgfMWUD7bdnOxHL9a4HhVrAwq%2BKPq0dgpezN2crgD2f%2BFFFn8U0XO/YggL//Zw6bM1y4KjCg6CS25b%2Bblj32A8sWyv9cczFVcqC0BAbTjrwzWJutexCg9MDucHXBH1t1e9i5FrwPArh3we59AB92ifREpyMJ4C5sfJ0uNReC7m4kwxUj3Ldu7Sz2lwpibhv4%2BDMnA%2BrX5eKM37mxcW/uZ5Fislv4OWVvTB/x5yWY/17SKDtTY%2BW9xO8AvlsmNr5mcrEEcHtenwAMoL8iB2OXsQgD3P8cI1RLUKUO6H6f4asCtIcO5PPzkgXi//8JAq3HKwY5e2O2xvDx/dHDTqtPiOVFEyC1X%2BUqwMe/pOHnMMMRZor4/QsA7rQinGkXI2gowjZ/FL7dGW47NjIXOXtLbe1lp3W8F08At18NZ0e3jN8WmTUJntvjc599u/eZhOJyGfZnBdy1c9uY95b%2BwguwsD8S1qU%2BLbrCG1iLzFqbEntLbN3aztJxnoIAXG5DoN22JvZ3/4YzPPA5OT8VWQo627MfZm94mZXKjNT020vmaPZacbh4AnDG5g0p30L08/3OoeGsurb/J6ip/qyAq91cCFw8AeaCW9bUIMCDt%2BXyLtY3J7%2B17aUIUOORBpmHGmTPJPr9oMGKAIOAdmoeHqzvqOquDzJcBBgEtNTMiYAIMKdfDmsVA4rPyNv%2BFrBEgBb0JHsFAUeALUmgQ7AC7VAI8F0bppeHvl9TiZBWgErg1sRyVRA6qJyqy61fFuw5OBFgY3QtVRA2Vjldd7MTgO9z8bV3VuHgT2X58JVoPi%2BNQPMoB6QYFrlKZtYqCCNwlo5JETgyATjD84fo4VukDmrOfpYqCJO6psmsewDcEvQwKp/fZPho4dEEsFZQsOLAIOdvcGN1N61VEKy6Yu1Kis%2B26MnJnrKwbQ4Uy/cjCeC/mutSdKkKChbb2cb9KCZWxyfsgzpjVRCsusJ2pcVna/VY5FLbwaPdBVjGummbkQSwVlBwtYNKB7pWa2itCkKpHtd%2Bz19PxWyO2cM06CMHugyr9UW13EgCOCMtFRSsA2JfrOHJf6ny4z1%2B6bRHDc1cSjdVu3T2TJDV113a7UEASwUF62DXzgDsw1IFwarLb9dSKLdGnyWlG5KSs/8vSyJgDz/XjHO4zEhgrBUUrCDkskCWKghWXbHzxEjsrCldf7Z3%2B/9vATxaO9BLlxvpRDrEUkHBijl/Eba29fHfhfH73GLMo7cV1pTuaLusvpq23RbBMO3gOhqWCrSt07z%2Bucmv56PCths5VwSoAzJGgB5p3pR1qZSuVoBCf4oAhYAtzWOBZk3zthbFVWHbOp9FpUSAOjDXZtot07yhdbmUrlaAQn%2BKAIWArawArqct07y%2BdZaUrghQ6E8RoBCwpXlLodwajZaUbq8CvDX2HkZGBKh3VW2h3BqNlpTubK9m1IxzuIwIUA95afHZek15ydzZIN/DSVuIAG2OLyk%2B26ZpXXrvwrY9x9a1bxGgK7zqfHYERIDZPST7uiIgAnSFV53PjoAIMLuHZF9XBESArvCq89kREAFm95Ds64qACNAVXnU%2BOwIiwOwekn1dERABusKrzmdHQASY3UOyrysCIkBXeNX57AiIALN7SPZ1ReA/sbm5U0yJUpEAAAAASUVORK5CYII=" data-latex="{^{lim}_{x\to 2}\frac {f(x)-f(2)} {{(x-2)}^{\frac {7} {3}}}}=1">则函数f(x)在x=2处
A:A
B:B
C:C
D:D
曲线<img class="kfformula" src="" data-latex="y=2{x}^{3}-6{x}^{2}-18x-7">在区间(2,4)上
A:单调增加
B:单调减少
C:有最小值f(3)
D:没有最小值
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}cosx=(\, \, )}">
A:0
B:1
C:2
D:3
在区间(a,b)内,如果<img class="kfformula" src="%2BWoSKbEm1m13KtVsQgsp3NIiEBNEpVIiaflvyJDObyc3cO2f%2B987/njv33EZe771nzpznNzPnzMy7AnssAgojsKLQJ3PJIgAD0yBQGQEDU6Us5pSBaQyojICBqVIWc8rANAZURsDAVCmLOWVgGgMqI2BgqpTFnDIwjQGVETAwVcpiTk0FzB%2BAnVJFcK02LlMA8yCA2x1gbgewB8DFnvPMJQBPAbzuaWdZn1cdlymAeRPARwCXI4oTynMAfh2ABm/rj4nAWXVcpgDmnwDOtoBHcR4DuDMAmDTBWWgfgCMD2Stppuq4aALzbwCrAXwH8LVlhgyFPu4gGmK2DO3ec7D/W5KqgrariIsWMJnfcbZaD4Bg7BcUO3zv7oCzpWeFfhwYKD0oyF%2Br6SriogVMVpfXAJwC8BnAhwQYzAevO5BLiE8fjk0k1wz7X01cNIDpq8szAK4IKTsNYFPBXJC56/sMf4RuF3%2BtmrhoAJPL%2BAWXLz4RSlcanNICC7uZ/Vo1cdEApjSnDFV665b%2BUgUKC4iTALZkozHuB9XERQOYDCafHAgkJx7Mt4462%2BsAPHJLM2fDNQA2A3jRUf1L2iiFod%2B2ov3/3E4FN/9TBwkSnycRl7HA3AvgN6cqAeHzzv37l6DSlgjAmdhvlrM97ncyj/0EgCnDMwC7Oqp/SRslwGRawxk7LL748z%2BusS7NJD5PIi5jgRluzfC4kceJsZOdNuFTAnBP9IED0NvgN7eCgomV95uOAqqtDc5mBHyR52Gin5zNOTAPRQYn/bmf2K0YMy6LxKP1m7HB5OzA4icmRFdHJQJw66k5AHLaSbUxqBAAuMS%2BaoHP/y41gFM%2Bc8BOIi5jg8kq8rBgM70JQUqA5vu%2B8s/pb24bfUH1Psa2zbpm0rDdXJ/VxiVHqL6Bj32/SOFDO7kb4Mwn%2BewWdoIz1O%2BZBZnQdOtrjAXz7Zgm0gFcTVzGBrOZ90nFJWjMTaXbRWwntQyGbbPY4LIvBVnqdyo9YQEY252g/88F/lQTlzHB9Cc%2BOcB4YZkr8bKH5A6mr2h5ayjcwG/mWyE0XOJ4oSTMx8J8tUTxEx7Lhr74HQUWh6n%2BjhmXIQbn/zbGBHPRwofOd1204LK3NThHjy2DFHtbh9ClLkJ0icdlmLNiczB4/08IVohq4jImmNK8qU1MCsnbSLHCyC%2BJzBV3uMrfz5iSy8VttgedFRrG/P5l2CdfnPBVqVZVxEXa2RKCLFr4hMt57N4mBd7pNuy/uFmGVe0vAPgznxsdN4f4/dqWZbxEHEKb4Z1U/j9PpphLt%2BWeMX9oY/JxGRPMtpxKKn6pypkD5rySK28%2BD/dXAiWxqSIuY4HpA56z4R0TxZ97p4oCiaB8h0vnN0XX3XLyy7CPk4/LMsFkQbHR5YUEgOfUORc32uDi0sUlr%2B/f/XCwMAWIVeJSsBd9r1mw0Y6vxpl%2BxHLpVFuTjssywQz34pigc5brC1OYb/YFqmv7KAVB3983z8EJ5VVntM9N%2BiH6NISN7PgsE0xfVHB/8KWi5TI7aAU%2B8LGh6VUANrg/L%2Bkq0gq4ocfkMsHU02vzRH0EDEz1Es3TQQNznrqr77WBqV6ieTpoYM5Td/W9NjDVSzRPBw3MeequvtcGpnqJ5umggTlP3dX32sBUL9E8HfwJoHFBQMBkVwcAAAAASUVORK5CYII=" data-latex="{f}^{'}(x)={g}^{'}(x)">则一定有_________
A:f(x)=g(x)
B:f(x)=g(x)+c
C:<img class="kfformula" src="" data-latex="{[\int {f(x)dx}]}^{'}={[\int {g(x)dx}]}^{'}">
D:<img class="kfformula" src="" data-latex="\int {f(x)dx=\int {g(x)dx}}">
下列排序正确的是
A:<img class="kfformula" src="" data-latex="ln(1+x)<x<\frac {x} {1+x}(x>0)">
B:<img class="kfformula" src="" data-latex="x<ln(1+x)<\frac {x} {1+x}(x>0)">
C:<img class="kfformula" src="" data-latex="\frac {x} {1+x}<ln(1+x)<x(x>0)">
D:<img class="kfformula" src="" data-latex="ln(1+x)<\frac {x} {1+x}<x(x>0)">
设<img class="kfformula" src="%2BklEQVR4Xu2dS8h/QxjHv39ZWromJZSFslCuuRQ2QrEQclu4ZIUiQsqGLCiUksuCyCW5ywZZKIQFZSGXSCmULNjY0FfzMKaZM89czsz7Os/Z8O83t%2Bczz/M9c54zZ949sMsIGAEjYASqCOypqmWVjIARMAJGACag5gRGwAgYgUoCJqCV4KyaETACRsAE1HzACBgBI1BJwAS0EpxVMwJGwAiYgJoPGAEjYAQqCZiAVoKzakbACBgBE1DzASNgBIxAJQET0EpwVs0IGAEjYAJqPmAEjIARqCSwmwT0ZABnAbi90la/2l0A3gTwXoe2/o9N9GT9f%2BQzw6Zanz0EwPcLAz4awNcAfk%2BUOQbAJwCeB3AZgD86G9/L12r5NJmzWwSUkG8EcH6Ttf9Wlvbu2yUi%2BifQ/NWYto3erDtN2eabqfVZxs29GXo/ATgVwBeRcge7xcYFid9bJqanr9XyaRl/c1A2de5VfgTAfgB%2BBvAtgLuDhp8C8DqAZ3t1COAiAOcAuLRjm2s1pRW/pf61bazBei0uW2u3xme56DgOwK0RWHsBeAjAxwAeT8CsFdBcTLO73r5Ww6fJh3bCCpRLbxp%2BOICXAJwXrLaudELXa/XpA2N/FOaU8zTB7VhZK36tArom6444Nt1Uqc%2BWCijLvwjgKhcXNQKai2lO4Fq%2BVsqnyZl2goBSHB4FcI3LxXwWPKoTyHOdV58CjcJ9YcfUQNNkLFQeJaBrsl6LzdbaLfXZUED5SL%2BvW5HGVqDMed7i5TtrBDQX05yztXytlE%2BT/8wWUBr7DIAbADwQsYR5jSfc6rTJ0IXKTKBfscNzoSMEdATrteZwa%2B2W%2BGxMQG92Oc8vI4/wrQKai2nO1dq%2BVsKnyXdmCyiX%2Bre5R/Q3IpZcD%2BDYlfOUzMN8lBDwJrgdK48Q0BGsOyLZdFMlPjt6BZqLaU7c2r5WwqfJkWYLaCzn6Rs0AsTak9k0Qa7yCAEdwboHi1FtvAXgzFGdFfZT4rOjBTQX0zR1bV8r4VOI/r/FZwvoB244JySs4O/Mj675kofJ7KsBpMbQBLhT5ZiA8jHoctf%2BYQBec6toOs/%2BAI4H8I63oyEnwiNYd8IxpBny2Kk%2BUeKzowU0F9OcvLV9rYRPkzPNENCzAdzhRs0g5/Wh%2B%2B/9wcuiXNCL8aViEkLT9tME26tcOt7Y%2BHinl32sZMrdBMwlfwWA6RCuoM7wdjTkbMz93sv2VDsU/usA8GbA622XH0/dPOVlATeCc/vbb95NpMdYawV0lB3a%2BRohoCUxzbnRjL00RqbE9AwBFUMl2cwvi8J9n1JGA5plS8VkCmyv09Lxhhy4x%2B4VJ5Q%2Bq6e9fDET6e97/86xzP3eQ5RSbfCR7ggnmBTCAwAwlyZCemfwko/28%2BZAv/EFluJ1lNvR0TreGgEdaYd2vkYIaElMawW0NEamxPRMAeXLIwbJxQtblDROUiMmWtgUea7qaq5XEzeGmvHGBJTbvkLHbWGpYV3DIVcntR9Q3tRyRfqNt1OCgcUrtS%2BYPsXyrWmfUgEdbYd2vnwBDbct9d7GpIlpjYDWxIg2pnP%2BWPT7TAHl3fqSzCeKGich7FIxmQLbdVoz3hwHefO5NJ%2B5NnK/FzlWQWH6wcOJbWS%2BiL4M4F33mJ/bdhYyLhjOP0VLBXS0Hdr5GimgmpjWCuiuiOmZAqpJNmudxA8QjZjMFNCwb814cxyY7%2BS19NY410budxk3H5OZq665%2BOlsuF0tJ3aS35X%2BllbZUoZMWw%2BdKRXQ0XZo58sX0L3di0W%2BNOV3771XoJqY1ghoTYxMiemZAkoH8HN2sYCs2RCrERO/L65yeNjCrDeumvHmgoW/L%2BWSNU5bw7pGRMM6OeFheV%2B0Ux9d%2BO1q2mR5pgMOShjBF5zycjMswjxteLPS9NnLjhKf9b884iZ5fqbJPDFPX6KAHgjgB8/AsEzJl0iamGZXpb6miZEpMT1LQDUvkAiE4PilUkk%2BSyMmPmzmrriqmbXnTzPeJQHl%2BB%2BLfIwQBnROhGtYjxJQ8RfpL7aSrRHQpfH3XoGyr1521PosxfRXAL8sHDByrlulyvF2WgHVxnRNXGtiZEpMzxJQbbKZIsAtKtrHMa2Y%2BLD5uMeToPyci/y%2BxkukcKJLxY95phO9z1tjeSc%2B9p4UcMsJaCnrHuLJNjj%2BpROxJA/6IAAGN9%2B%2B%2By%2BVwnGw/LUdvl4rFdCRdiz5bGpeKITcuXGaW33KOZ9yaMhSPZ6dmzvOThvT7KfE13rHdC%2B//budWQKqTTbnDgaoFRMf4lqHGsQmqna8vvjx//loyZQDxYLnODKgZFWWOmMxJ6A51l0dz2uMAcI37ambpP/WPfVmPpzPHidslQroSDtKfVZynS%2B4/bXCS0T0O%2B%2BxPpxn7QpUG9OyEk8d4lMbI1NiepaAapPNki/hUXexq1ZM/LaYj0m131s0asfrix/v9Kc7EZXtOsytcXXGf/N6MvJW22%2BDNlO0TgnKjWThs%2BWK5PPgPAIKEm3lhnr/6YAiyn2hXInyovD%2BCGAfl4rhhwSyok3ZqZnXUgGVldUadoTjDecpZ6c8usdSYXJ83T2JM0MpslyBpg5clrGVxPRSXNfGyJSYniWghCRH2OWcmcEVO2SZ9WrFRPpk/UM7bbzO2dEy3tzqUdN3uIoV8fE/YlhiremjpYzcBCiETKnwWMOlYwwlDyhCypsHH/P9U71oc8xOzThrBJTtrmGHP96Yz6bsTK08/fakDHOjPHSZK07etI70Ci2tUKVYSUzLzSYW17sqpmcIqCSbNdtRCLrkjaMmMPwyDJKbdvhRdhxvbwHlHPDiSjZc3c3ckVA6f7nyKTtz9fh7rYBq2m4pE/PZmJ1cWXJ/bW7luDQWecTnC1aKauoqjek143poTI8SUOZs%2BM0yH5WZr%2BOqoWTbkByQoX2ZpHFQjoN/CyZ2Dqmm/sgyvQVUHJjBFX5GuwbrkazCviRPnPpcODU2%2BuwafwWhhcWSz9baWTue1phmv719bXhMjxJQCgDvYLyTMV9DISz9%2B0Z8vOTpQqX1Yg7CO2a4%2Bqp1pBH11hBQPip9GtnYTnt6sh7BZ6mPJTtnj62k/5zPjrazR0z39LUcnxLW6rKjBFTyNsxt8XO82lWfZrOyxvhe7Wj66lGmt4DKSTexrVsy3t3GKMZZY2eP%2BRnRxtJ8zLCzV0yLiC75oobvFH8dJaAaAFZmHAE6W%2BxN/bgRjOnJ7BzDebO9mIBudurNcCNgBFoJmIC2ErT6RsAIbJaACehmp94MNwJGoJWACWgrQatvBIzAZgmYgG526s1wI2AEWgmYgLYStPpGwAhsloAJ6Gan3gw3AkaglYAJaCtBq28EjMBmCZiAbnbqzXAjYARaCZiAthK0%2BkbACGyWgAnoZqfeDDcCRqCVgAloK0GrbwSMwGYJ/AWld0FeDhpG1gAAAABJRU5ErkJggg==" data-latex="f(x)=x\left | {x} \right |,(-\infty ,%2B\infty ),则f(x)">
A:在<img class="kfformula" src="" data-latex="(-\infty ,+\infty )">单调减
B:在<img class="kfformula" src="" data-latex="(-\infty ,+\infty )">单调增
C:在<img class="kfformula" src="" data-latex="(-\infty ,0)">单调增,而在<img class="kfformula" src="" data-latex="(0,+\infty )">单调减
D:在<img class="kfformula" src="" data-latex="(-\infty ,0)">单调减,而在<img class="kfformula" src="" data-latex="(0,+\infty )">单调增
设<img class="kfformula" src="" data-latex="y={e}^{ax+b{x}^{2}}">,求dy=( )
A:<img class="kfformula" src="" data-latex="(a+2bx){e}^{ax+b{x}^{2}}">
B:<img class="kfformula" src="" data-latex="2bx{e}^{ax+b{x}^{2}}dx">
C:<img class="kfformula" src="" data-latex="(a+2bx){e}^{ax+b{x}^{2}}dx">
D:<img class="kfformula" src="" data-latex="a{e}^{ax+b{x}^{2}}dx">
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {\int ^{0}_{x} {co{s}^{2}tdt}} {x}=(\, \, \, \, \, \, )}">
A:0
B:1
C:-1
D:<img class="kfformula" src="" data-latex="\infty ">
函数<img class="kfformula" src="" data-latex="y=2{x}^{3}+7x+6">在定义域内
A:单调增加
B:单调减少
C:曲线上凸
D:曲线上凹
若<img class="kfformula" src="" data-latex="f(x)\geq g(x)">,则<img class="kfformula" src="" data-latex="{f}^{'}(x)\geq {g}^{'}(x)">
A:错误
B:正确
设<img class="kfformula" src="" data-latex="f(t)">是连续函数,且为奇函数,则<img class="kfformula" src="" data-latex="\int ^{x}_{0} {f(t)dt}">也是奇函数。()
A:错误
B:正确
若一个函数在某点的左右极限存在且相等(设置为A),则函数在该点的极限也存在,且为A ( )
A:错误
B:正确
无穷小量和有界变量的乘积定是无穷小量 ( )
A:错误
B:正确
若一个函数在某点的左右极限存在,则函数在该点一定连续
A:错误
B:正确
有限个无穷小量的乘积是无穷小量 ( )
A:错误
B:正确
设数列{<img class="kfformula" src="" data-latex="{x}_{n}">}有界,又<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }{y}_{n}=0}">,则<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }{x}_{n}{y}_{n}}=0"> ( )
A:错误
B:正确
<img class="kfformula" src="" data-latex="d\int {f(x)dx=f(x)dx}">
A:错误
B:正确
<img class="kfformula" src="" data-latex="f(x)={sin}^{2}x+{cos}^{2}x,g(x)=1">不是相同的函数 ( )
A:错误
B:正确
f(x)是定义在(-l,l)之间的任意函数,则G(x)=f(x)+f(-x)定是偶函数。
A:错误
B:正确
|
|