|

 极限<img class="kfformula" src="" data-latex="{^{lim}_{x\to \infty }\frac {ln(1+{e}^{x})} {x}}=">_________________
A:0
B:1
C:2
D:3
下列排序正确的是
A:<img class="kfformula" src="" data-latex="ln(1+x)<x<\frac {x} {1+x}(x>0)">
B:<img class="kfformula" src="" data-latex="x<ln(1+x)<\frac {x} {1+x}(x>0)">
C:<img class="kfformula" src="" data-latex="\frac {x} {1+x}<ln(1+x)<x(x>0)">
D:<img class="kfformula" src="" data-latex="ln(1+x)<\frac {x} {1+x}<x(x>0)">
下列函数为奇函数的是
A:<img class="kfformula" src="" data-latex="y={cos}^{3}x">
B:<img class="kfformula" src="" data-latex="y=cosx+sinx">
C:<img class="kfformula" src="" data-latex="y=\frac {{e}^{x}-1} {{e}^{x}+1}">
D:<img class="kfformula" src="" data-latex="y={xe}^{x}">
<img class="kfformula" src="" data-latex="y=\frac {sinx} {x}">的奇偶性 ( )
A:奇函数
B:偶函数
C:非奇非偶函数
D:既是奇函数又是偶函数
若变量<img class="kfformula" src="%2BCAYAAAAxrhmWAAAEKklEQVR4Xu2bPasWMRCFz/0Bgo1gKfojFGzstdBOwcLC2o/WD7C5ln78AwtFrRTRXjvFRqxV7G0sFOyUkV1478tuMtmdzGb2noWLyOZNTs48STbZnR3wogPODuw4t8fm6AAIHSFwd4DQuVvOBgkdGXB3gNC5W84GCR0ZcHeA0LlbzgYJHRlwd4DQuVvOBgkdGXB3gNC5W84GCV2agasATgE4C%2BABgOtEZr4DhC7t4QsA57oifwG%2BNpyPHE3MebgJmjV0XwEcywlY433OdLqoyjIry6uFX6cB3AZw3Kg%2BXQ8aKmVhYkPdqSLlPICnhoDIkv3cuM4qHa9VKaFLOyvAXQNwAoDMdg8NA2G9XBtKq1vVfofuMYAfAA4B%2BAjgCoBXG7tUAWPzsvSL0NVlu8naBThZNt8A6OG6CWDXcClNdZzQNYlFXVH3B2a0MwAOAHimaFp%2BL0tv7rowUh%2Bhyzm34vv9zvQJgIuO/SR0jma31pTsJuWNw9iMVEsvoavlbMP1ygz3BcDrTmO/SbgB4K6DbkLnYHJrTUjQv3WiPne7V/nvb%2BOjke1%2Bv%2B92y0cBfOjA91zWF4%2BD5RHA4p2hgBgOELoYcVqVSkK3qnDG6AyhixGnVan0gE4%2BgpQ/XnEceAtA/qpcHtBVEc5K4zpA6JaL3UEAJwH8Wk7CYMvvaushdLUdHq9f3tseBvBnOQmDLd%2Bpradl6Fo7sbfWI8GtHuDaAE2pv1XorAM8xZuh31jqKoFuVVlpLUJnGdipsKWSZiz09bt57Q5xVVlphG4vlpqkGQvo5HlOEn2016qy0lqDziKg2kAOldMmzczVWbK0bupcRVYaoRtGNAdV7n4KfDkquVQ400l9pVlp8jWLJBSNXdoBNmcQD/42InS5ZBoLk3JQ5e6nNMgHo98BfCoQOiUrTatRW65AbrpoNOi8kmlygcjdT7k%2B9jyXGkxTstK0GrXl9i102mSa2kkzcwI19DxXYzBpNWrL7Vvo%2Bo7XTqbJBSJ3fyxAR7qPHx5tFdAOppLAazVqy5W0nSzb2vIqYjUm1E6mSWnQ6Ns0XWY2OR752W0g5GxOnumGrqmDSfI6JF83d8nn8dubi9L%2B5NrI3o8GnVcyjRV0slPtD4Jfdq%2B9Uq%2B%2BLAeTFiZtuSxM2gItQpea7cSgmsk0uaSZqQGSmU42EGPnczUGk1artpyWqWy5VqHTLrPZDhoWmBMcgU1mOnmmk3%2B3rxqDKac3N8AMrdtbVcvQVev0AhXLYbCkHN7rnu08JOSg89Aw2Aah87FeZrhbAC77NPe/Fa%2Bk8eIuEbpiyyb/QGa77aOSyZVF/iGhixy9oNoJXdDARZZN6CJHL6h2Qhc0cJFlE7rI0QuqndAFDVxk2YQucvSCaid0QQMXWTahixy9oNoJXdDARZZN6CJHL6h2Qhc0cJFl/wNXY9A/A9MeHAAAAABJRU5ErkJggg==" data-latex="\frac {{x}^{2}-1} {(x-1)\sqrt {{x}^{2}%2B1}}">为无穷小量,则x的变化趋势是_____________
A:<img class="kfformula" src="" data-latex="(x\to 0)">
B:<img class="kfformula" src="" data-latex="(x\to 1)">
C:<img class="kfformula" src="" data-latex="(x\to -1)">
D:<img class="kfformula" src="" data-latex="(x\to \infty )">
<img class="kfformula" src="" data-latex="f(x)={x}^{2},则f'[f(x)]=">
A:<img class="kfformula" src="" data-latex="2{x}^{3}">
B:<img class="kfformula" src="" data-latex="4{x}^{3}">
C:4x
D:2x
函数<img class="kfformula" src="" data-latex="y={x}^{2}+2x-3">的单调减少区间是( )
A:<img class="kfformula" src="" data-latex="(-1,+\infty )">
B: (-1,0)
C:<img class="kfformula" src="" data-latex="(0,+\infty )">
D:<img class="kfformula" src="" data-latex="(-\infty ,-1)">
<img class="kfformula" src="" data-latex="\int {\frac {xdx} {\sqrt {x-3}}}">=( )
A:<img class="kfformula" src="" data-latex="\frac {2} {3}(x+6)\sqrt {x-3}+c">
B:<img class="kfformula" src="" data-latex="\frac {2} {3}(x+6)+c">
C:<img class="kfformula" src="" data-latex="\frac {2} {3}(x+6)\sqrt {x-3}">
D:<img class="kfformula" src="" data-latex="(x+6)\sqrt {x-3}+c">
设函数<img class="kfformula" src="" data-latex="f(x)={x}^{3}-{x}^{2}-1">,则f[f(1)]=_________
A:-1
B:-3
C:0
D:1
函数<img class="kfformula" src="" data-latex="f(x)={x}^{3}-3x">的极小值为( )
A:0
B:1
C:-2
D:3
<img class="kfformula" src="" data-latex="y=\sqrt {1-{x}^{2}}">的奇偶性
A:奇函数
B:偶函数
C:非奇非偶函数
D:既是奇函数又是偶函数
当<img class="kfformula" src="" data-latex="x\to 1">时,1-x是比<img class="kfformula" src="" data-latex="1-{x}^{2}">( )
A:高阶无穷小
B:低阶无穷小
C:等价无穷小
D:同阶但不等价无穷小
若<img class="kfformula" src="%2BwGwxrGXzVK5HRCTyU4QYFGkBwVQihcSpdQEYmGiqB1KAhB5XZONIiEuERFjShdajX5xb7Jmv/uzszOzH57eTb5F//vm3ln5plnnp1535n5zjE9QkAICAEhkIXAOVmplVgICAEhIARMwikSCAEhIAQyEZBwZgKm5EJACAgBCac4IASEgBDIREDCmQmYkgsBISAEJJzigBAQAkIgEwEJZyZgSi4EhIAQkHCKA0JACAiBTAQknJmAKbkQEAJCQMIpDggBISAEMhGQcGYCpuRCQAgIgaWF82szu9LMHjGzlwT/GQSuMbObzOzJQmyeMbOPzOyLQjtrzC4OTfdKLQ5Ryp55VMTtpYXzDjN7y%2BzMUc%2BHzezFgc%2BLGrexzBD%2BMTO7rUK93dbzOxTPMQ4B29F5VJND4LlnHhUNs6WF8w0zu2tEIBkQbxe1ZtuZweZ/FTEAz1vM7O5tw3Km9lMcIvGReVSbQ47nHnlUNCyWFs4/zey9SrOqooYvnPllM7vAzH43s5/N7Nmg/Ps6kasx2%2BybfrcT41cXbm9KcU%2BY2fVmdmNK4l6ao3IICKZ41IpDlLtHHmXS7p/JTyGcff/mzWZ258AslCXXxZ0vlPTndsJzdbfU7/9/VREC7TPjJ2IWdGlHwP8MzLgh5jsVZ5veKsq9fYUvKpaAn5vZN2aW238IZ%2BgjH%2BLRnjjk/sYpHrXikM8698ajopG/pHBCbpai/TJZWrCUZDD0PycAwIAKZxf8jy/00a7VYb4iMBplpo7/NbMHzexHM/s%2BEDJE5LVOWFtUgTLvXZmv05fbtDeHg0McwsYQj/bEIdo4xaPWHKL8PfGoeJzlkLa0sBe6mUK/TGYFvw4EjPicqHsojP3/xwZRaT1r5vdAxtQuAtp6RUNfJKLy7Yp2MbCkPK97AeYK5xCHsDHEo71wyGd8BFXHeNSaQ/5y2guPisf4ksLJGwsfX7g0Y2DzhEEMfGAsc72OYcSU7xmELIHX%2BlB/6olz/f8jlWwtbEsMqhz88dMx%2B/ZtRTkcHOOQD%2ByQR3vgkC/Tp3jUmkP%2Bcmr5gs/hEGlLeJRb1pn0OaQtLYzZIvsT/whmP3yOn/Oi4HMGFo8LLT6cf/X%2BZxAR9AjtldazZn7qPOTT7JdBO1nKtwrg8HJ5YIYvsSYObosXyZfdS8SF8/6Mto9xCPtDPNoDh2hbjEetOUQd9sSjYm4vLZyU5/4or7wvv4c%2BR2g9Au2Dpv8/9li%2Buc%2BzGJDKBsKBO2Q%2BxU%2BLD%2BueLvMlZvZh95JhNnlhd6jg04FofYhx5eZlmcO1cnmvju7nzBXOIQ65cIbfDXEm5NTaOUTbYjxK4RB2xKMsyo4nXlI4mSF%2B0EVS%2B/s16fQ3Oz9nfzk75d%2BkRWP2KkEz2wwC8VSXm1NSPESPeQhshXtVU0jPjMM3s7tvF3/XD93s7WMzu2Ei0JJSxuwGJ2Zkttk/EcVSi5lwX8hipqb6fIhHW%2BUQOOTwKLV/xaMYwxK/X1I4E6u0m2QeGIoJQ4z0CMz7gY/URcL9wgjKVxMBprEyqCMCPOfhJRjuRx2zwzLvl6AN7n/0HQdz6nCEPCk8inEInMSjimyRcFYEMzDlwoD/dupEVIz07gR38z6QYnb71YmV0Q6Fv5eH141s%2Bn%2Blt1WrZR22bDuFRyn9Kx5VZIGEsyKYganY0UBPnkL6vmmP1Of0XW4ZNVGhvrgRwoeTVPhr52yCr1m/tdtK4dGc/hWPCno%2BZ/AVFHPIrDGHvoOSu7EYfyZP6lFFZnzPnSiqzuyYU15jOwYY8BLO6eGRwqNcDlGieFQgSxLOAvAiWUM/5FhyCMzm5tTtSGGkONYC/Iss61OFNmYv5/tweRjmpS084uE4qik8yuUQpYlHOUwO0oqwBeBNZE1x6Ht2xIWDASl3cCKC%2BAXDDfVTAsWSjGUxm87Dp2VwCN8cp8KmXggSzmn%2BpfIoh0OUKB4VjnsJZyGAI9lTHPqedeoiDvxbXGzip6OG/F1sW/n3hPC2vPxhDD3cA08nzHLnnB5q02PrtJrKo9hlLuJR5f6VcFYGtDOX4tDvl4yPaujoaN8H6NFpZpA%2B40y5uHbMdpuW/x1FRzR/Gpnlhu0mQDS0CZ568921K7ugpBVuQ3ZzeDTVz0fmUZP%2BknA2gTV60iMslaXW0D2dfmclARSEiGUvp4Vu7f7HzusTwkJ%2BrucbWqa3aLlvxHfbHGwYukjZZ0AIoz%2B08fFeW3wZH9sH26IdLWzOiXynBIa8rmMc4vsj86hFX8op3wTVf14BllJEq8g3A68vRil1WUsalp88XHa8lPC3bPsc4SRP6gGBVhwCky3zqEmfasZZH9Y5G9SphZ87TwkSpdSaJf1vK7pOLqXOYZqxzfNzbJ06T65wzuFRbQ6B2R54VL3vtyycBD2IMI9d11YKlt9IE9oZ%2BukP0l7W%2BSl9w3fuzeaUw3KLyzpKf3uJQbeHmRpLzO8a9jGYt%2BSRX4U4xMWhsVeDR7U4RJ33wqNSLTiTf8vCya1IbLOJ/RgZ/jS2%2B5CWi1gf6i4bqXmjErOJT7ooMk56Zo1zxS%2B29zGFBDVspJTTMo3f5NN6mb4Uj1JmnLV4VKv/a9lpyZOT2F5aOGuLGESLXRLM5nJmpf1gQ/%2BC5BrAexAGcf5s48vjGnjUsMGgHQp81eYQdV2CRynCKR7VYM4CNpYUTghfW8T8irWxyGv/rk4XToT2/G5G6D/FANT93zJaAHoVMQOBFhyiGkvwyH/KY0azlWVtCCwpnDERc2x8U3QuVrHf9UEYw%2B0x/VlAyowgt05KXxeBVA5RqnhUF3tZ6yGwpHB6se4wH9vjl9NB2MJnyd9UkMgDPeFVbBLOHLTXk7Ymh2iVeLSevt1ETU4hnGMiNgewmG%2BKAcEt6fwsMY%2B3F18Sl/BKOOegfvo8NTlEa8Sj0/fppmqwpHDGRCwXuJRoKAOCEzc8/J45UXUe/4E3CWcu6qdNX5tDtEY8Om2fbrL0JYUzJmK5ALLtJ7ZEj9mUcMYQWtf3tTlE68SjdfXxJmqzpHCuERBF1dfYK9urk3i0vT4rqvHRhbMIPGUWAkLgmAhIOI/Z72q1EBACBQhIOAvAU1YhIASOiYCE85j9rlYLASFQgICEswA8ZRUCQuCYCEg4j9nvarUQEAIFCEg4C8BTViEgBI6JgITzmP2uVgsBIVCAgISzADxlFQJC4JgISDiP2e9qtRAQAgUISDgLwFNWISAEjomAhPOY/a5WCwEhUICAhLMAPGUVAkLgmAj8BbQdvlhmAl5tAAAAAElFTkSuQmCC" data-latex="{^{lim}_{x\to {{x}_{0}}^{-}}f(x)=A,{^{lim}_{x\to {{x}_{0}}^{%2B}}f(x)=A}}">,则下列说法正确的是__________.
A:<img class="kfformula" src="" data-latex="f({x}_{0})=A">
B:<img class="kfformula" src="" data-latex="{^{lim}_{x\to {x}_{0}}f(x)=A}">
C:<img class="kfformula" src="" data-latex="f(x)">在点<img class="kfformula" src="" data-latex="{x}_{0}">有定义
D:<img class="kfformula" src="" data-latex="f(x)">在点<img class="kfformula" src="" data-latex="{x}_{0}">连续
下列函数在指定的变化过程中,( )是无穷小量。
A:<img class="kfformula" src="" data-latex="{e}^{\frac {1} {x}},(x\to \infty )">
B:<img class="kfformula" src="" data-latex="\frac {sinx} {x},(x\to \infty )">
C: ln(1+x),<img class="kfformula" src="" data-latex="(x\to 1)">
D:<img class="kfformula" src="" data-latex="\frac {\sqrt {x-1}-1} {x},(x\to 0)">
曲线<img class="kfformula" src="" data-latex="y={x}^{3}">的拐点坐标是( )
A:(0,0)
B:(0,1)
C:(1,0)
D:(1,1)
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 1}({3x}^{2}-2x-1)}=(\, \, \, \, \, \, \, \, )">
A:0
B:1
C:2
D:3
题面见图片<img height="80" alt="" width="372" src="http://file.open.com.cn/ItemDB/11174/711b5348-87dd-40c6-9fec-4b6c3c8199d0/200949172527917.JPG" />
A:A
B:B
C:C
D:D
<img alt="" src="http://file.open.com.cn/Lms/ItemDBAttachments/image/singleselect/shuxfxfs/20061001/b40db19a.JPG" />
A:A
B:B
C:C
D:D
设<img class="kfformula" src="" data-latex="{e}^{x}">为f(x)的一个原函数,则<img class="kfformula" src="" data-latex="\int {xf(x)dx=}">
A:<img class="kfformula" src="" data-latex="{e}^{x}(x-1)+C">
B:<img class="kfformula" src="" data-latex="-{e}^{x}(x+1)+C">
C:<img class="kfformula" src="" data-latex="{e}^{x}(1-x)+C">
D:<img class="kfformula" src="" data-latex="{e}^{x}(x+1)+C">
下列两个函数是同一函数的是
A:<img class="kfformula" src="" data-latex="y=\frac {{x}^{2}+1} {x+1}与y=x-1">
B:<img class="kfformula" src="" data-latex="y=\sqrt {{x}^{2}}与y=x">
C:<img class="kfformula" src="" data-latex="y={3}^{2x}与y={9}^{x}">
D:<img class="kfformula" src="" data-latex="y=lg{x}^{2}与y=2lgx">
<img class="kfformula" src="" data-latex="x\to 0">时,无穷小量<img class="kfformula" src="" data-latex="u=-x+sin{x}^{2}">与无穷小量<img class="kfformula" src="" data-latex="v=x">的关系是:
A:u是比v高阶无穷小量
B:u是比v低阶无穷小量
C:u与v是同阶非等价无穷小量
D:u与v是等价无穷小量
函数<img class="kfformula" src="" data-latex="y={x}^{2}-12x+8">在区间(-10,10)内满足()
A:单调上升
B:先单调下降再单调上升
C:先单调上升再单调下降
D:单调下降
<img alt="" src="http://file.open.com.cn/Lms/ItemDBAttachments/image/singleselect/shuxfxfs/20061012/5da114cf.JPG" />
A:A
B:B
C:C
D:D
已知f(x)的定义域是[0,3a],则f(x+a)+f(x-a)的定义域是( )
A:[a,3a]
B:[a,2a]
C:[-a,4a]
D:[0,2a]
<img class="kfformula" src="" data-latex="y=f(x)={x}^{3}+1">的奇偶性。 ( )
A:奇函数
B:偶函数
C:非奇非偶函数
D:既是奇函数又是偶函数
函数<img class="kfformula" src="" data-latex="y=arcsin\frac {x-1} {5}+\frac {1} {\sqrt {25-{x}^{2}}}">的定义域为( )
A:[-4,5]
B:[-4,5)
C:(-4,5)
D:[4,5)
<img class="kfformula" src="%2BddJvuL//pk5e6%2B9Z83Mnpn9nYMeISAEhEAhAucK66maEBACQgAiEDmBEBACxQiIQIqhU0UhIAREIPIBISAEihEQgRRDp4pCQAiIQOQDQkAIFCMgAimGThWFgBAQgcgHhIAQKEZABFIMnSoKASEgApEPCAEhUIyACKQYOlUUAkJABGLvAz8CuN7%2BNcVveB/ADQBuAXAJwPnillTxzCEgArEz%2Bb0AXlw65qg4vwbgKwBfLDD8DeADAI/awaKWj4RAb8e%2BuHSopwG8MRmQtwG4B8ALiXJ/AuBjAB8Cw9454uzDJ4unALw%2BsLyJ0A9d7CUAXwL4ZmgpE4XrTSAPrXSo0R2X5PEsgAcScfWLcVTvjXOqmJQtJPOR5U3Va%2BRyzpdePQKJ9HZsjniPrHQokstHg1qecn9eKN/IHZLE7c8ERyfyUdyDOF27kC8J%2BDIAVwC4NTGGRF%2B/7whLxd4Ews70aeFIvpfzXFiMXTL7oMwjE0iIKWXlEuaZvcCe5L1cijPYHPpzjq25xOWg9O4kOkfF3INA/CkzA40PR2YlWwzPmEIu49fYyMUySmdHOU5VI2dtXQZUOaqWEmXt%2B2eq72Zuvm3pyySE1D7FWciDs%2BOdqmwL48YAdkG8sJNtMbw/Qlp3Tq5X36vchrWWsYVtHGFr5pGO5vMAGBB1fSj8O6UlbvE/NnMspCeBcITj7MN/Jx3310hgNcbw4XIgl/FTDBqWoRw3V65VRyeQkDxGjkWV2NCqDgc5Pu7cDMmAy5G/MnYYOYB%2Bm1HeSpfidnsSCAH%2BPRJkIoh8wrMHIaOHAT7%2Bn/EJy0NaLQxsQSA8u3F3sdX/r0gS5iEyP5BKXF9u0DabaCVnI3H%2BbaaVTLQrt/QdVs7OHChTZ3ItBqiW2GS31ZNAHOAhQ/N7xkGuChw5ZHjGIq6uZPxcgCjD24WBLtZlZP665YTnD5UzGV92t8TL1ScsT%2BxjTyu/aCVnrZ5W2Pk4cYD8bLF1aryMA%2BDjiTs3LTFo1lYrR0kRyDF0eHhp6/uQ4WsZP0VOv4zF7CFXhlj5ETvmLHKOht2oPpbkpz0JZI2h3fFp7q64I9UUPgQ2/LuE8ZNA8QqNatzROsEariPKOZpMaz7GWBRjhiUPZ0KtlqGb7%2B9JICVA7F1HBFJngdE6K7UZTaZRfSzJ8iKQbZhGNe5onUAzkKTuFi00qo8laSQCKScQHrrip8XzB4DvMhrKIZDLAdyU0fZWUUs5G4l4spkc7Fra%2BGcA/ISPCOSkyeYtsOdBH7frFEPP5e6I/e/PRlu8qVYbUc4RZYrhyYOKr2gXJtXV5ivHMwMM7o52XyFnFN0T9RHlHEkmbuPyCEPsTI%2BCqHt6bqN3v7UcfkvNAbL1Wh4augPA/Q0urFl3glayWstZYmZLmXJx41F4nhV6okSREeooBrJthZYXnjitdhfVate9lp2AiLSSNVdOTumvCdImpH6X2p9yZUpttwS32ouaObKZlBWBnIa1VU5TnzRGJ5BWsuZ2VncyltN6d5oz9bvTlvyvRK5Mqe2yXC5urXwrR8amZWcnEDL4O8EBtKYAAeAyhtHzVgdzWiTtsewEPn61subKyZjTXQBu926opn6XavdcmVLbzcWNd464yzPt8oUKz04gvLjENaRlEuCWkfK1lI65TtqjE7SQtYeco2GXihuxeW7mq/y9CaQ2Ddyao3DayPRw/jF4V5ZG4pane8JkRm8uQdJflmvYa0RE2a/MSKgck9VF1Xn9O0wlmNsJ/BhFbt2U8q1ktZYzRZewjKVMqbgxePrbzNf4Hag9ZyBuNGKH99Ma1sYDXF4Q/6Id9QsDVPybOyAkEd6MZfYon3jYzo0bSxUuZb7eyIt6iiDDm689sQ%2Bn16fyeY4iawlBWNU5ZV8XA/HfH7MxSebO2ZcuexBIThq4cOaQ6hT%2BDCOW14JBK16v5xObtZzKhUESWVuzWhFkqu6p5WaRM1WfXuVa4bblQ710afae3qNgizRwofIkpieXj7%2BMWSMDN7rGdD9FIFvA5xBkMwMWNDSLnAWqmVYRbhF4exMIWZxPTRq4UI21GEiMDNxyh238FMlmVkMgbNOCIC16xSxyWuhe06ZwC9DrTSAuK1lNGjhfha1dGBr7ey%2B46siDSxem8WNyZj8W0%2BK3OiwIssbh1%2BrOIqeF7jVtCrcBCKQ2DZyvAmMaXL7EdmBYjtnP%2BBMQTIXI7V6/rNtuc%2B21%2BGHp1gRZ4%2BxbdWeR00r/0naF284EUmq4WertkTWtBJtZ5CzRzbKOcBOBWPqX2hYCZwuB3jGQs4WutBUCB0dABHJwA0s9IWCJgAjEEl21LQQOjoAI5OAGlnpCwBIBEYglumpbCBwcARHIwQ0s9YSAJQIiEEt01bYQODgCIpCDG1jqCQFLBEQgluiqbSFwcAREIAc3sNQTApYIiEAs0VXbQuDgCIhADm5gqScELBH4B8fIukgzke5MAAAAAElFTkSuQmCC" data-latex="{^{lim}_{n\to \infty }(\frac {1} {{n}^{2}}%2B\frac {2} {{n}^{2}}%2B...%2B\frac {n} {{n}^{2}})}=">
A:<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }\frac {1} {{n}^{2}}+}{^{lim}_{n\to \infty }\frac {2} {{n}^{2}}+...+}{^{lim}_{n\to \infty }\frac {n} {{n}^{2}}}=0+0+...+0=0">
B:<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }\frac {1+2+...+n} {{n}^{2}}}=\infty ">
C:<img class="kfformula" src="" data-latex="{^{lim}_{n\to \infty }\frac {\frac {(1+n)n} {2}} {{n}^{2}}}=\frac {1} {2}">
D:极限不存在
<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}cosx=(\, \, )}">
A:0
B:1
C:2
D:3
函数<img class="kfformula" src="" data-latex="f(x)=xsin\frac {1} {x}">在点x=0 处( )。
A:有定义且有极限
B:无定义但有极限
C:有定义但无极限
D:无定义且无极限
<img class="kfformula" src="" data-latex="{({e}^{{-x}^{2}})}^{''}=">________
A:<img class="kfformula" src="" data-latex="{e}^{{-x}^{2}}">
B:<img class="kfformula" src="" data-latex="{-(2x)}^{2}{e}^{{-x}^{2}}">
C:<img class="kfformula" src="" data-latex="4{x}^{2}{e}^{{-x}^{2}}">
D:<img class="kfformula" src="" data-latex="(-2+4{x}^{2}){e}^{{-x}^{2}}">
设函数y=x,则<img class="kfformula" src="" data-latex="y'=(\, \, \, \, \, \, )">
A:1
B:x
C:-1
D:-2
设函数<img class="kfformula" src="%2BYhVLs0FiK4RQCCU2VGQTDRVByyoIQSW%2BomEjItkV3dZLlEK5We3KjzlxXfPMe2fuzJ153pwp32fO/Tjnd8/933PnXSJ/3AMZHliSYeum7gE5QA5BlgccoCz3ubED5AxkecABynKfGztAzkCWBxygLPe5sQPkDGR5wAHKcp8bO0DOQJYHHKAs97mxA%2BQMZHlgngDaJOlnSaeyZvzF%2BIykx5Je9NDW0E3ckLRG0jpJLyWtH7rDNu3PC0DAc1zSL20m1/CutXd%2B4hBdkPRE0qNqLv9LuilpX09%2ByG5mXgBiFT6UdDt7xl8b2C1p%2B5SCUTM35h3CclTSRWk6l%2BBTAeiypOWSPkh6K%2Bls4MyDVaD7yj5hnO5WYF7tEcw%2BmyLjHJN0KWiUv00lbpMYCHqEbLBaEgHdGTmIv93pOftYPOh3V49bY5/w0BYZJ4SnLgORpVh4LMBXko5Iui/p174HU9feFEhmRV2RdFjSa0l/BwFFq1yr4BrKH/R5YOJayOaOr9jCDA7guVVpJH7j4ZDBoiwS2yKdNESeDIAD4jRtJqy4tQPrFILAyg1X%2BlCw5rSLoF4ZZUv%2BZjAZQOi6ZQNl7O/GPzZArJSTlcaxk0Y4yBLBLQFpDji2lQHPrG3JtrbiJ7SxAarTPKGz/6q2tyFFLiL90NTqK4ETgCOEh6wdn0bNj3tKZR4b39gAAQjPrOJY6okDrbS/amuVpAfVloTzV1RFuD%2Bi010Iamo/uZkktt8miaDzfJS0NCpX8DtFxHB7JWPbKZX5/VPZ0IbFM3yn7zF/094YAOGU36pRUF3locLKg0AMV1dqYFmBVhSkfWpG6Cqcy9ZIMW5Lg7BM7afPYBBksh%2BnpnD7ZlHZgjJdE/drceP3N9WPHD7Qcjz/ldJ0YwBkzjABzakhrPu0zQzUkO5FQYgrtpy0/mwQ47MAYoyA2OXhKD1rXsCD/qvbckKAuvRb1GZMgJqcaE5IyQwARAkgBrONHkjpp6/AWIasE7xTr0t954MxAeKEtXeBekWXwNrJrs3cuvTTFSiAR7SHgLOVsZ2j307PSU3q8/zbOLmrw2bZLSSgsetS5EPv8GxNHDAC/FzBUxjzBhaKp/agAd9F23Di8Md9bUyAUm6WgYFCY5tjPO026arY46x%2BskEqcLkRY3xPC/aXO95G%2B7EAShHQDJx0zz1P6jdAwPB7TWEy1kmhU9jyuEcKdVSop/oW0eHVzaDBLdH4WAClCGjmv5CoREdtCO7K6nQVonVjA4RDXtbWxZCs%2Bm/DBa7Vduoq8yWYaNXHWAClCGibCDqIm/q6h9VsX%2BmhZTZXx2PugwhAyodoTe23cmbiy5Ylf4zEshUV%2B/7uKXFY3V4bC6AUAW0zYvuJvxGy38hkP1UQUVBDK7GCdwQFtusNpxrsuSao2766eTTNKh4jVszx%2BTydwBj0WAC10QFDnpIA%2BcS8BS2N0TJvjQGQCeg2hT6700oV0yneQzy/L1XyTxnQPL5TCiCE6g%2BVliFw3Eu1/e8CtjIuRPv4LhqI2fpKb13zyMgkjvFh7QPRSibpAkLTcbxNcPpqp02fi/LdUhnIxCr1lme%2BbSwelkoBtHg85jP5xgMOkAOR5QEHKMt9buwAOQNZHnCAstznxg6QM5DlAQcoy31u7AA5A1kecICy3OfGDpAzkOUBByjLfW78CQTe6jKzb9QUAAAAAElFTkSuQmCC" data-latex="f(x)={e}^{2x}">,则不定积分<img class="kfformula" src="%2BmXO20i%2BO3Nm5pnzzJxn5szfAfnnCDSOwIHGx%2B/DdwTkJHAnaB4BJ0HzLuAAOAncB5pHwEnQvAs4AE4C94HmEXASNO8CDoCTwH2geQScBM27gAPgJHAfaB6BrZLgFkn3SPpO0sOSfm1%2BphyA2RDYIgmulvSipNMlvSDp%2B0CI2UBww20jsEUSsPp/KumpsBNACHYF/xyBWRDYGglY/b%2BVdEYgwCyDdqOOQIzA1kjA6o8eOManyRFYCoGtkQABTDiELvDPEVgEgS2R4CRJv0h6JJwIzQnAeZIulXRkZCOPSvpA0hcj7eyX6lPh1jfeVfDcEgkIgzgNujgI47kcg4m8T9I1EzRgtp5ogAhT4tYH/Sp4bokEnALdLOlYSX9P4KB9Jl6R9J6k13sK8O9/SjpO0jeS7pL0jqR7e8pfJ%2BlySTfO2OctmB7Cbao%2BLo7nlkhgF2KERbXfM8F5cWLsPZYYui04bN8uwES/Jul9Sf%2BGuoRMbNO7sHozEOv5zI7fLel6SWdJ%2BlnSKZn11io2hNvU/SrFc1T7WyGB6YHPJF1UOSIclVUEhwJExHU6Pv7%2Bxo5d4MloxTcSsMofvaMO3aXdaytCrJ8k/VBRrxKi6mpDuFUb3rG71uBZ1Y%2BtkMD0wBhRjNM%2BK%2BlOSV3ORbz5Uuaqy0rNce2rBWEObRLO5Ypk%2BvN52K3GCvSqyc%2BsVIJbpsmsYqV4ZhntKrQVEpgeuDWkTJQOiJWYMIab5ad7KuPYZ2Y6te0khCx92iFthlAKDdHXflreiFbSRikuU5QvwW2K9sxGKZ7VbW%2BFBNwNnDbipphQ6IEQ7xPPd305oDLhP4b4HhuGD7ZTfdHl1Lkkoy79uWFAa1RP7IQVc3CbsLk9U4uRbwsk4Hb4rzD02v70aYB4cr4K4dIu8UpIhVDlI1ZnZef7J2OFRzzeIensTI9gu%2Bde5JLM8msVy8Ftjr6V4lndh1qnq26woyJC%2BJOQLUruUM3HRPHtckAcfO7x9rXBqnZFINhRIXTjmJbdpU8PEIvfFMZ1sqR3AxGxdXw4Wfo4Y4eqwTOuswRufX1cpO25nSJnAngv8FAQrQjk3O8ySQ%2BGwhw18n0d/ouoTWP5JQDtaoNw4oRoxce5Hw9OvEsPsLvZJRxjhTRoHsI1Qr4PJR1ekdi58zSm3BJzNvvKmAPAW5KuGpEuYaKYFXVX3L4EoGkbaAn0yvnJqdGQHuC%2B4%2B3g7IYhtuPTKsKpLzuEPnjUpp5zKZhiuARuze8EXGqdOCJdwhxt6JRlicmM27Aj0K5j1qHwDRJw1GufEX1ojDmLTmmZJXBrmgSxKK5NlxhaVeOVtCv846KuJAzDHke6XU8%2BY4exE6sux43vNHKc0mytEb46CXJmaEQZE8W/SapNlxhaVa17c1%2B%2BWKxv4px%2BoVVSx%2BXU4zlJt0vKTbMg/udb4yRpbtz63CfFc4Sb7a66xsoS98hEMfFv7RuCNFbuGzGOxIVaruOVgo5zs%2Bqbo9IvhHp6YkWow1FqCfbYGtI8pf3NLT83bn39SPHM7W9xuZKJKDaeUcFuisnQ5ESn9MsVxdjF%2BUisy0lRIMQ6NazkXY7c1U9CFjJPLZbvC3ninSsnP992DnKY4ovAVDdYn6YWxiW4lc7frvIpnlPa/p%2BttUlgN8W1bwhyRTGDzk1yI4mO1c8cLnenSZPMCCM%2BSgSuHXVajhNn/r8nx7kQ8Jwox6lL82Dn3ExCj3WeXNzGtpPWXyxpb20SWKZmbT9yRbEBjGMOpS1jM34bYDk%2BQ31MbUPQK6NwyFZ9/m4kSNuin3EYRZ0LwjGr7QRLPG5JHTIHt6lJsFibQxM79cBie/bLEmPSp3NFsbXL1t71ziDuF06YJuINnZDg2Aj7%2BFjTQjBCJMIwC8VYWRHFpGdw45te6mHrUNATlEHDxDfO2H25IFt1ijnMwW2KdsxGH55TtrFna00SWPo0WZe1lzulR405Jw44XJwJmrMTQMb7F3bMWRyix2gOblP2Z1E81ySBnQzxyotb49Kv9gLJcm9yBLKFJ4j2vueVCLg/MhLsSse3tfKluNX2f3E81yQBvzJ3YeGbYsTSwRDXAxa5M7lZm/GksL13hSLpxCGSCXP6nmNCREKXNAyqdYCt18vFrXYcq%2BC5JgmIzXlQX5I5SvjDiQtn8QgnVvPcRy/pxPQdMVo5Vj4I0LcDWMzfCgFiXTXXmIfmpJZcO%2ButRQJLl%2BC5Y0nKggkmxCY7Se4rrlLwUgKwQtWSrbRtL78wAmuRwNIlap9TzgkTZ/BclMUEy3lZNmef3PaMCKxFAhPFtUlzM0Ky91MraRtrYTXnWN12Yf7KlIARyhASleiBKdt3W47AHgJrrW4I3Np8IZ8%2BR2BSBJYiARmiiE00AKs/R51bDIUmBdeN7Q8EliIBGoBbYQQxF0%2BEQ/zNP0dgdQSWIgHn7Tg/PzHC/4WGnWHOH91dHVjvwP5BYCkSGCKEQqRP%2B%2BcIbAaBpUmwmYF7RxwBQ8BJ4L7QPAJOguZdwAFwErgPNI%2BAk6B5F3AAnATuA80j4CRo3gUcACeB%2B0DzCDgJmncBB8BJ4D7QPAL/AWlHjkwuurRVAAAAAElFTkSuQmCC" data-latex="\int {f(\frac {x} {2})}dx=(\, \, \, \, )">
A:<img class="kfformula" src="" data-latex="2{e}^{x}+C">
B:<img class="kfformula" src="" data-latex="{e}^{x}+C">
C:<img class="kfformula" src="" data-latex="2{e}^{2x}+C">
D:<img class="kfformula" src="" data-latex="{e}^{2x}+C">
极限<img class="kfformula" src="" data-latex="{^{lim}_{x\to 0}\frac {{x}^{2}sin\frac {1} {x}} {sinx}}=">_____________
A:1
B:2
C:0
D:不存在
曲线<img class="kfformula" src="" data-latex="y=\sqrt {x}">在(4,2)处的切线方程为( )
A:<img class="kfformula" src="" data-latex="y-2=\frac {1} {4}(x-4)">
B:<img class="kfformula" src="" data-latex="y-2=\frac {1} {8}(x-4)">
C:<img class="kfformula" src="" data-latex="y-2=-\frac {1} {4}(x-4)">
D:<img class="kfformula" src="" data-latex="y-2=2(x-4)">
<img class="kfformula" src="%2Bd2funO9855zvnDP3vQPkzREYFIEDBrXLzXIE5OR2EgyLgJN72KV1w5zczoFhEXByD7u0bpiT2zkwLAJO7mGX1g1zcjsHhkXAyT3s0rphTm7nwLAI9EruayTdIulzSXdL%2Bm7YFXDDmiHQI7kvlvSkpGMlPSHpi0D0ZiD4wGMi0CO58dbvSnooeG6Ijhf35ggkIdAbufHWn0k6LhA7yRh/2BGIEeiN3Hhr9PbBvkyOQCkCvZGbgyOyBN3tzREoQqAnch8p6VtJ94QMSZFh3rkJAqdIOlfSnYmj3yvpDUkfJvYrerwnciNHyI6cGQ6URYYt0PlmSWeEKIOcunWBd675Coh9m6RLMiZhfR9YkuA9kZusyNWSDpH0awaAS3d5MVroP6XhP/x4RtJrkp7PBPoySedLujKzf3K3nshthRrkyX5oMaFTyY3Xv1zSCZK%2BkXR05wZfF4iZ47Vj03AIbJDHl7C3F3Kb3n4vhPolbK/1DoiKLMnB8mtJX2aG%2BlrznzMOpHyhwGvbO/Dely5lb86CzAEj9RnT2/vtMMliPZdJbHToB5LuyzigpeJb8jzzfKpidGFDIz%2BbHy57Ibfp7WtD6b1kMZbqC7GpnJ4oCe/9cOKLzeMjT3J1bOIrsx5nnsdX1Mpo908z8EqefC/kJrd9TIeVSRbiZ0mHhgW5SdIrITOCzo5bKpaMfUWm109e6IIOtclYe7PsaVrqghRgtGdXqpG/hN/2MB%2BbKIuK5HhdkhGZ/C452xrzJDyT1z%2BnBagVx/xY0qMVD4EcTm8IEa/iNP87VI1FKp0gueJ3wu0/7pb00h6MctdGblJZB2XICLzVBSEzcmDYNGQNtulttO5VAYyjJL0aQjljHRYyLW%2BHMVpilpoJmjOXFmP%2B5709kJv72neFQwsHy96aaeNnM3UnEeDwyEND2vsDObfpbTIUVvQ4L6TQ0PhfhWjypqSzK0WRbZi3IGKLMbsk90uSLuq47A7JuOuSc/C7I8iYUyfZgV16%2BxFJLwcS26JBiHiDIWs%2Bmmw4O%2BTmOAjOEkSSaWtBxBZjdkluijdHJJbdS0M2nhCy0v6QhFSYVt/w2HhJfk6zKAdhN5FgCq6l%2BjZ5fHQsjUzLpga5b4x%2BYSnHnA2WQ/S4TwsithizO3LHh8mUsntJyIacHGrIfHBYtAbhYrKxAFQPaRRaSF/Rfp%2BZxuLgybs2EZKxOaTFBN5GQhtrDRnZgogtxuyO3HaY/F7S3LJ7bsjGeJMJmwg3JXepx2M8yutTQrKxHpN0fUIGAn1NWyOzUrvoYmeOvaJWKe7/9l/DE8STt8Mk%2BnLuHe7ckG2Hsk0yoUVZGO/0yQbpwfxJhaVgz1ikIefIoWrkCAOxsUiJ1roPwubGuTTfqCkA1waN8awyyXVR7mfktLkh20gVe22AxruSamOj1SwJ7yU9Yr095360eXrSkLGMmm5ysGtxoOQ9FLJS73DvtZasF0WxuZIshxN/91mb3FaZLLnDPTdkm0xA61rDs/4wIU02mJOOhPO3Joto0cP0NofWHyd5czIpJ0V3OTZlVhjn5IqE22Zz7ahW6xLWznVam9xWHCmZx9yQzXOQrXk4DKij7y%2BMZIl5aX5u5Ia40/vNsZyhz2khnWieu%2BSjgZ2E2OMBNmqta7k1x9pqTwmpcoGyfvale8k115SQnZqhKLWP/oR0QjBh3UI7npDDJJkYKozTS1OQ/6yg13kGrRtXOBn36coSapet2EHKtlTzYxuJg%2BaSZG1ZYtdcuU039%2B%2BSlIRs5MtvW%2B4SW1471rW7Fv3/8vtaGQ6k4e1Lbcw1PbdlSvi6gyrlnFYSss3LT6uFVtAp%2BYRqztz3%2BzN2pyX3YMlB8qeZNYIqWK1Jbv6q1OmJ30yWhuxpeAdEwu37S3mTKqu23iDIk01SateMkGJIrUXkiE1mTXJDKj4E7ukm4K5F8t//c45IJWlOn2Ks1yK3ld35fKnHm4DFwPoA6yOwFrmt7L6fPitbf7V8BkkIrEVuO0ymXJZKMswfdgTWIjeHSaSJ623nYDME1iI3Kb2S%2ByTNAPGBx0FgKXJz4480HBobb839Apck4/CoS0uWIjcamyokB0lu/yFL%2BJk3R6AZAkuRm/sEkJo/ZcB/TcCT74c/dtkMeB%2B4PQJLkdssQZJwzdWbI9AcgaXJ3dwgf4EjYAg4uZ0LwyLg5B52ad0wJ7dzYFgEnNzDLq0b5uR2DgyLgJN72KV1w5zczoFhEXByD7u0bpiT2zkwLAJ/AVwUYEzHcIz3AAAAAElFTkSuQmCC" data-latex="\int {x{e}^{{x}^{2}}}dx=(\, \, )">
A:<img class="kfformula" src="" data-latex="\frac {1} {2}{e}^{{x}^{2}}">
B:<img class="kfformula" src="" data-latex="{e}^{{x}^{2}}+c">
C:<img class="kfformula" src="" data-latex="\frac {1} {2}{e}^{x}+c">
D:<img class="kfformula" src="" data-latex="\frac {1} {2}{e}^{{x}^{2}}+c">
设<img class="kfformula" src="" data-latex="I=\int {\frac {{e}^{x}-1} {{e}^{x}+1}}dx">,则I=
A:<img class="kfformula" src="" data-latex="ln({e}^{x}+1)+C">
B:<img class="kfformula" src="" data-latex="ln({e}^{x}-1)+C">
C:<img class="kfformula" src="" data-latex="x-2ln({e}^{x}+1)+C">
D:<img class="kfformula" src="" data-latex="-x+2ln({e}^{x}+1)+C">
设<img class="kfformula" src="%2BklEQVR4Xu2dS8h/QxjHv39ZWromJZSFslCuuRQ2QrEQclu4ZIUiQsqGLCiUksuCyCW5ywZZKIQFZSGXSCmULNjY0FfzMKaZM89czsz7Os/Z8O83t%2Bczz/M9c54zZ949sMsIGAEjYASqCOypqmWVjIARMAJGACag5gRGwAgYgUoCJqCV4KyaETACRsAE1HzACBgBI1BJwAS0EpxVMwJGwAiYgJoPGAEjYAQqCZiAVoKzakbACBgBE1DzASNgBIxAJQET0EpwVs0IGAEjYAJqPmAEjIARqCSwmwT0ZABnAbi90la/2l0A3gTwXoe2/o9N9GT9f%2BQzw6Zanz0EwPcLAz4awNcAfk%2BUOQbAJwCeB3AZgD86G9/L12r5NJmzWwSUkG8EcH6Ttf9Wlvbu2yUi%2BifQ/NWYto3erDtN2eabqfVZxs29GXo/ATgVwBeRcge7xcYFid9bJqanr9XyaRl/c1A2de5VfgTAfgB%2BBvAtgLuDhp8C8DqAZ3t1COAiAOcAuLRjm2s1pRW/pf61bazBei0uW2u3xme56DgOwK0RWHsBeAjAxwAeT8CsFdBcTLO73r5Ww6fJh3bCCpRLbxp%2BOICXAJwXrLaudELXa/XpA2N/FOaU8zTB7VhZK36tArom6444Nt1Uqc%2BWCijLvwjgKhcXNQKai2lO4Fq%2BVsqnyZl2goBSHB4FcI3LxXwWPKoTyHOdV58CjcJ9YcfUQNNkLFQeJaBrsl6LzdbaLfXZUED5SL%2BvW5HGVqDMed7i5TtrBDQX05yztXytlE%2BT/8wWUBr7DIAbADwQsYR5jSfc6rTJ0IXKTKBfscNzoSMEdATrteZwa%2B2W%2BGxMQG92Oc8vI4/wrQKai2nO1dq%2BVsKnyXdmCyiX%2Bre5R/Q3IpZcD%2BDYlfOUzMN8lBDwJrgdK48Q0BGsOyLZdFMlPjt6BZqLaU7c2r5WwqfJkWYLaCzn6Rs0AsTak9k0Qa7yCAEdwboHi1FtvAXgzFGdFfZT4rOjBTQX0zR1bV8r4VOI/r/FZwvoB244JySs4O/Mj675kofJ7KsBpMbQBLhT5ZiA8jHoctf%2BYQBec6toOs/%2BAI4H8I63oyEnwiNYd8IxpBny2Kk%2BUeKzowU0F9OcvLV9rYRPkzPNENCzAdzhRs0g5/Wh%2B%2B/9wcuiXNCL8aViEkLT9tME26tcOt7Y%2BHinl32sZMrdBMwlfwWA6RCuoM7wdjTkbMz93sv2VDsU/usA8GbA622XH0/dPOVlATeCc/vbb95NpMdYawV0lB3a%2BRohoCUxzbnRjL00RqbE9AwBFUMl2cwvi8J9n1JGA5plS8VkCmyv09Lxhhy4x%2B4VJ5Q%2Bq6e9fDET6e97/86xzP3eQ5RSbfCR7ggnmBTCAwAwlyZCemfwko/28%2BZAv/EFluJ1lNvR0TreGgEdaYd2vkYIaElMawW0NEamxPRMAeXLIwbJxQtblDROUiMmWtgUea7qaq5XEzeGmvHGBJTbvkLHbWGpYV3DIVcntR9Q3tRyRfqNt1OCgcUrtS%2BYPsXyrWmfUgEdbYd2vnwBDbct9d7GpIlpjYDWxIg2pnP%2BWPT7TAHl3fqSzCeKGich7FIxmQLbdVoz3hwHefO5NJ%2B5NnK/FzlWQWH6wcOJbWS%2BiL4M4F33mJ/bdhYyLhjOP0VLBXS0Hdr5GimgmpjWCuiuiOmZAqpJNmudxA8QjZjMFNCwb814cxyY7%2BS19NY410budxk3H5OZq665%2BOlsuF0tJ3aS35X%2BllbZUoZMWw%2BdKRXQ0XZo58sX0L3di0W%2BNOV3771XoJqY1ghoTYxMiemZAkoH8HN2sYCs2RCrERO/L65yeNjCrDeumvHmgoW/L%2BWSNU5bw7pGRMM6OeFheV%2B0Ux9d%2BO1q2mR5pgMOShjBF5zycjMswjxteLPS9NnLjhKf9b884iZ5fqbJPDFPX6KAHgjgB8/AsEzJl0iamGZXpb6miZEpMT1LQDUvkAiE4PilUkk%2BSyMmPmzmrriqmbXnTzPeJQHl%2BB%2BLfIwQBnROhGtYjxJQ8RfpL7aSrRHQpfH3XoGyr1521PosxfRXAL8sHDByrlulyvF2WgHVxnRNXGtiZEpMzxJQbbKZIsAtKtrHMa2Y%2BLD5uMeToPyci/y%2BxkukcKJLxY95phO9z1tjeSc%2B9p4UcMsJaCnrHuLJNjj%2BpROxJA/6IAAGN9%2B%2B%2By%2BVwnGw/LUdvl4rFdCRdiz5bGpeKITcuXGaW33KOZ9yaMhSPZ6dmzvOThvT7KfE13rHdC%2B//budWQKqTTbnDgaoFRMf4lqHGsQmqna8vvjx//loyZQDxYLnODKgZFWWOmMxJ6A51l0dz2uMAcI37ambpP/WPfVmPpzPHidslQroSDtKfVZynS%2B4/bXCS0T0O%2B%2BxPpxn7QpUG9OyEk8d4lMbI1NiepaAapPNki/hUXexq1ZM/LaYj0m131s0asfrix/v9Kc7EZXtOsytcXXGf/N6MvJW22%2BDNlO0TgnKjWThs%2BWK5PPgPAIKEm3lhnr/6YAiyn2hXInyovD%2BCGAfl4rhhwSyok3ZqZnXUgGVldUadoTjDecpZ6c8usdSYXJ83T2JM0MpslyBpg5clrGVxPRSXNfGyJSYniWghCRH2OWcmcEVO2SZ9WrFRPpk/UM7bbzO2dEy3tzqUdN3uIoV8fE/YlhiremjpYzcBCiETKnwWMOlYwwlDyhCypsHH/P9U71oc8xOzThrBJTtrmGHP96Yz6bsTK08/fakDHOjPHSZK07etI70Ci2tUKVYSUzLzSYW17sqpmcIqCSbNdtRCLrkjaMmMPwyDJKbdvhRdhxvbwHlHPDiSjZc3c3ckVA6f7nyKTtz9fh7rYBq2m4pE/PZmJ1cWXJ/bW7luDQWecTnC1aKauoqjek143poTI8SUOZs%2BM0yH5WZr%2BOqoWTbkByQoX2ZpHFQjoN/CyZ2Dqmm/sgyvQVUHJjBFX5GuwbrkazCviRPnPpcODU2%2BuwafwWhhcWSz9baWTue1phmv719bXhMjxJQCgDvYLyTMV9DISz9%2B0Z8vOTpQqX1Yg7CO2a4%2Bqp1pBH11hBQPip9GtnYTnt6sh7BZ6mPJTtnj62k/5zPjrazR0z39LUcnxLW6rKjBFTyNsxt8XO82lWfZrOyxvhe7Wj66lGmt4DKSTexrVsy3t3GKMZZY2eP%2BRnRxtJ8zLCzV0yLiC75oobvFH8dJaAaAFZmHAE6W%2BxN/bgRjOnJ7BzDebO9mIBudurNcCNgBFoJmIC2ErT6RsAIbJaACehmp94MNwJGoJWACWgrQatvBIzAZgmYgG526s1wI2AEWgmYgLYStPpGwAhsloAJ6Gan3gw3AkaglYAJaCtBq28EjMBmCZiAbnbqzXAjYARaCZiAthK0%2BkbACGyWgAnoZqfeDDcCRqCVgAloK0GrbwSMwGYJ/AWld0FeDhpG1gAAAABJRU5ErkJggg==" data-latex="f(x)=x\left | {x} \right |,(-\infty ,%2B\infty ),则f(x)">
A:在<img class="kfformula" src="" data-latex="(-\infty ,+\infty )">单调减
B:在<img class="kfformula" src="" data-latex="(-\infty ,+\infty )">单调增
C:在<img class="kfformula" src="" data-latex="(-\infty ,0)">单调增,而在<img class="kfformula" src="" data-latex="(0,+\infty )">单调减
D:在<img class="kfformula" src="" data-latex="(-\infty ,0)">单调减,而在<img class="kfformula" src="" data-latex="(0,+\infty )">单调增
设<img class="kfformula" src="" data-latex="f(x)=\frac {{a}^{x}+{a}^{-x}} {2}">则函数的图形关于_________对称
A:y=x
B:x轴
C:y轴
D:坐标原点
<img class="kfformula" src="%2Bfs%2Bc577/P%2BSu63Z8uzs7PPzs7Mnib8EQEiQASIABEgAkSACBCByQicNrl%2BVk8EiAARIAJEgAgQASJABISkk0JABIgAESACRIAIEAEiMB0Bks7pELMBIkAEiAARIAJEgAgQAZJOygARIAJEgAgQASJABIjAdARIOqdDzAaIABEgAkSACBABIkAESDopA0SACBABIkAEiAARIALTESDpnA4xGyACRIAIEAEiQASIABEg6aQMEAEiQASIABEgAkSACExHgKRzOsRsgAgQASJABIgAESACRICk8%2BSQgXNF5JMi8q%2BTYzgcxSQEriwiDxCRiybVf1zVzpb/2fUfF257bJdYx2flPiLyBRH5a/yT7pI3EJHfdH91xQdLv1/QND/dIwIkneOzcicRuaeIvGC8iv9/%2BTIR%2BayIfHWgriuJyJtF5Iki8lgReddAHVt%2Bgv6%2BVkSeX1GWIEeXiAiU6lKF%2BkwRefWBYFOah1uKyHdF5B4i8vkFk6WyArm9WQe2%2BO42IvLNQttni8gvXX3XF5EbJpm%2Bjoj8qXIoQtm7isj7B8Y2W/5n1I/5fI6IPKKCCdYA9MGvG%2BUGIDvhE%2BqyMRRn6DK7bmq9WiqXkC8Q1seJyM8qDeGQ%2BpFB3WP7WNJdqtteISLPG5sGfnVICJB0js0WlDTIDBbkGj%2Bt7zUDxBNKCkTkVQdAOIGVbqYgJOcUFJ6WuW4nOfJzoUoPhOeQFRrk7K0i8iIRefsCgVM8vmNkRUl5pNrSxqAbh6/jd2mOr5pIc6uNkUNTVP4hU28Qkad33ghE62%2BNzf69hJctA%2By%2BLCI/FZF3i8hlPQ10lKUu6wDLFZ2ly7AmccirHUpULp88eBBVGfxQox3onocMHnwUHxhmSodlJbUYK/rC27pxeTyIL0k689OEjf3aIvL7pOxf7orBIvMpEblgxVnGwr63iDy8s04sWlgOW5arJdakzi5Vi0c28YiyivRJ63lHgJC3rHGR9maUWZM450in9hnzAmv7gzIHgdYmiA0M1hCVQT9/LctebWOLELQe3FubrK9rxvryeOX6X5urnvFSl/Wg1Vd2li7T9fPFymG5tWZalnSsaRzGWzdjvp0e3Qw5hz4pHfjX1G19M8fSx4YASeeJ0OOqGwTwLBH5qIjcX%2BTIG/WPSeRwLSun7QHaA5ltKQL9JroxqXK8yQ6umaGIQG5KVk6MTcd18eAp3hIpnLBb1oDoqf84FmpUyUc2wBHSGbGoeBLlSeYS0lnDfGTTOkNETg9aDmetr61IJ3XZ3BU7U5fZg95TkotQ72hKByys6Y%2BLyF2cS4y9Do%2B0lbsyt4f3%2ByVLvV7fezec2kE30j7LHCACJJ0nTtp/RQSWsccnP7UfuWt0EMMLV7Zyai9Ads9z7VnCmBMxXMO9RUReXJE/q3y2cD6vLYWS1cwGEPSSztoVsV5T4sRd%2Bum1MbDGFe9LNlzLer20ZpOla2pLos5Prhx69VXaACLXa55E4ZtrmsPTLNIZ2fRbuB7H%2Buqx3o64HOiYqctas7/s7zN0mfaodvMStb6XRpdbnyWLZGT923b0kHzbQuPwUdYbEeB3rYwllH6ey%2BRy11%2BTdB6dHpC%2BDya/r9dnZg7%2BT9isYQWd9UNAxqMCvp0lK0yvkpg1jly9rZO0kuN/p%2BCopZbOPWMRwX3EkufrjfhswmIB30F/vR61slrS%2BfdMoFiEZPVee0etkMCjFQhVk1Xr/4pya8jUFpZO6rLIChsvs7Uu055al6H3iMiDOw0gOd9m1RE5y2VJ3ksBT6UAJcULbjg/FhEYAxDIBAPPe900fEJEcCuH8b2pI%2BBxfDb55WYIkHQehRrXUYiqhm/lpzOz8DQRufWA32XPhMJf9FIRyZFeW0/ptLsk2rCnnyNla9Y0KCN1JlfSiYj80ajGHlIyMpYtvln7%2Bql2BZ9rK2pRsSTqnynI7pUGoBmWTt0McfOAg2Lk1xP9P3N9bUE6qcsiEjFeZktd5vW%2BBvZYPRmVbRDMHxi3JTsO7HvI9NHz8%2B22SKcaEmo%2BpRGXnp4%2BsuyOECDpPDoZOR9OWyJKCJdMcYTY1hblGpaYJf2vfVvqGxQQ/Jb02sVer/8xRT73WsLWJmyzMKnV2wrg6e2TWhxzV7YeL09Qay4PlkTdWERg7bRpWNYknfb6LrLR2jHDmvu1AGiz11fE8qvdHL1epy4LTPSCIrN1mcqIlXF/89B7sEafERWPwB4rgzUZy%2BX2tf34h1tTEdKJdfhSEXlCIVr9ZNDdC0Tr5P50S9Kp0dlInwJLno8Ih4XxzORLeVyoax7C2xU6gL9HIqGX9B%2BBSsidVupD68p1r6Sz1O/cv3uC00s0gP9ecYjKxozTvr1q9xZk2x6iZjX3q%2B%2Bv9cnSv/nrdaQmeqMhnmuSzpb82/622s3NRav%2BNeQqaun0OEZlB%2BWoy3rQ6is7Q5f563pcMSOtHK6XNU2aP4TmSGftdsL6j2P9o25P/lQPXCUZAXBzgXyxNpLeBwhZ9CKkE8YFBMuWcjCTdPbJ40GV3op03ktEIKgIzgGpeqeLCAdocHr/2Iq5L6MTgb4h/yF%2B6vz8rfT/r3P%2BMuhjBDP4fj4y1XGj9FoQrsthxYSDONqBP4sn3trnUjuRhNG5TRHKqZWQHW0v7XcNc42YRD8wz6pwcn6DOataJCeett9rAYjKypbl1rZyWuIOy8bVReTZJouAKnq7yXkCZ9Mi1f7m/cYilr2oJTviPjIaiDB7fS2RnwhRpS67AuFD12WeePUGHLbWE3Rk7VCjQT7YG0E6ba7N2itDLdL5WxH5eiKxpfZJOpdoip1/GyFQawwBJzU4C0N48d%2Bw5Nm2oSyRKgiCXSJia/SjVoc63tf6ECWduNrSRO86NiSl/kXyFf2ciNy9QmBL7dgNt2aNKo0zZ6WyZZf2u4avRkx%2BX0SuYXyKcptp6So3qoxKKUF8/7SdBzZSOM2WPV%2B/kqbWfOE7tUxg7moJ8FEnZPsvIvKVFBBnX7y5eXol58Mi8kN3Pd6y/uXm0PpsWYsj8t/614dqlhOLjc4/rufeVkmnVXMjaMmovr6y1vpqRcf3ylZEJqjLLk93t0QHt%2BQE2Rlm6rKIrltyuPYR7BjvM0TkM2nta/AdAukiLxcpXi3SaYNDS4GKkbH3rhuW3wkCW5FOOLXrc5GIzv6GC8bB1TrK5AJ4oEBB2EZ%2BuKKIkljtw0Mr0YAR0glSjRxoNhAJ333AjDmHgR1frh1spEiLhKi%2BWt7J2vUfFAle%2BcFp0//W6Hdpjqzl6z8u0CSXNqM3ZZJvF3VeT0TuaKzXub7pizk/TwoXV8LH/SKGjv3biQRivls/jAMpT3ClWuo/MEH6LxBsjci2Pl4qN89NVnqbNqq1CeRIpyWaSmgRKIb5z70M1Lq21s0MfmBPFZFaZoOIVTBH9GeuL9verdJc2LlqjV%2B/r61hLUNdtlwHH7cua6059G%2BUdKLunE9l7hBeIpE1fHCYLaVM8n7Y3p8f9WL9tnI5t3Qi/75TBLYinTp8tfp5x%2BWW0/sW8CFI6GGN6/Mo6YQbgf7U6lAjs358vh0sQpCK3FWH/za6eeVI50i/gRtebsIPVqzci0ro05%2BNZUpP1CDf/urGKtORlEk1K%2BcIGdlC9mwbSsJxzV16IciWj2xOusk8KblZ%2BDRAqE8tk0hT4q%2B9Wlf9OVztPIA42xdSrEUFbdurw1xQg934cECAv%2BkI6cxtcLrJzV5fljSqv6wd6%2Bi6zcknddnlrly9OnhPuiyyrmuks5QDM1ev9QNFECDkU3VEpB9WBnssnSWCSdK59a6zYXtbk05N4%2BHbPS5/Tgt1y/EeZSOk009facy1abbtWGtUJG/iWptXpN%2BwqNzUEE0o7Z846zKUlr9OVRJ9kXs%2B0W/MI6Szlopj76TTznVU2UfKKenXK2NPOr1lWecH1/WR%2BkuWTvUB9aTT1t8itJD5S0QEjxrADziX2SCqMmFlwXvm1tK69foqPXFYWrct14bc2KnLjqJyiLrMrruRVEaKgA0YLCVur0Wvlw7xpXXbSzpzVleSzqhGO8ByW5POnDLcgz%2BnEkp7BZ6bzmjidvst/Dfxw4YX%2BcEBHrnSEL3u01VsSToj/QY5huuD5hRFoBSCr1pyZSM1cwpv9Hq9Fa28Z9Lp%2Bx4he5CnVjnIDDYI5M0sWUb8xqLl4LN2i/RGc8tfFATzfSLyQiPkGsxgr9dxpRzNRuAJJ6qOXClG5/k41ldpQ40EikRz1np3Huqytg7emy5rrevoWvBz72%2Bd9O%2BRRyRycuQDlnpJZ67O6PqN7KcsszMEWuRg7e7aZ9m07oj/0dr98PVFHO/xDYgYElFH30ZXMtsTIIXoflzF50jqlqQTc9Xqd87yG7UG106zOs6e9FQ5guLneVSZaTCIphEppfoYlVPU75/fjGw6EdJpnz0tETZr7dMx9IzZ4oqoeLx3j2Cxc1JQQu4wMGqRj8jG6Dxvsb6wuQOX77nnVkfxoC5rr7pD02WRdT1KOttoHS3RK5cknb0In2Ll90A6W/6cWwQSRYkvgm3gv6hBUS1x0fRQPkAK9VifI1sProLgG5n7%2BxabIvoS7fco6VRCBesY/AyVnCgOEWLhsfd%2BgjNO0GqNaqUjacmF/XvJqX8t0mnbypHOUuoUHasGW9lk771kPkc6tS%2BIAkaAUTSAKyIbeyWddk6Rr9i%2Bd927uZdkjLrsKDKHqMtsxoOadTti9Y/qolyAmq41BJ/qwx2t%2BtYgndbHdO0Dfqv//PtkBLYmnbheR9ogDTZRBQnLSPT6eQYkEcd7tAsCfF4llyjqub15mz1XL9wJ7lAhriDhFxYi6JeSTv8EmmI52u8R0qkKVSPwNb1NhNyU5r50ZdRLjiKytTbxPDflcfWkayvSaf0rdfxW6eMpUrh71Py%2BWiTPkk5EryN4DFbs89N/Iwm2P3iU5mLPpLO0vkpWKZV96L6rJf3SQ8BzGFGXjengvegyyJDNn1tbW0tIp3fnyKXiUr/NR6e0SYhIb7l4rEE6W37eET3NMjtFYGvSqVZLEM%2B/JashiCfSGkWthzOgjDjea7vw6zyr0AkoLiSWhz8mfDOxkdpUUPg3LCgs%2BNKvVr9uuEjtgpQ2pbQULYx82orRfvcq6pICtT6evu8tqyLqhN9hxOWhpsCjlibb18gzjK25KP3dWjsidUT64jepnEtCTuGrv1fpYBAhnZqOyLso%2BOCG1ji2IJ1rry/MX86FwZJRkPtIDs6WLFCXjengPegyXWd%2BDVhd0NKHXj6se00rS4T9Npfpweq%2BEvksBStp3bmxWdeiUqBdS%2B759wNBYGvS6WGp5efcEsKcr2mpfVyNX1bI/4nx3C0Rz18lIoTgGix8/D9%2BmiQ/V3/rKdCIpTOCm39RYrTfPYq6lMLD9zdCtqziRS5OfU878m0Ln8jGby1UsNLP%2BPVYOtGHWu5W7Z8nndYloSVbdsPyG1%2BLdOpmWtqo/KGj9Ra0WkrtQSNiuWnNUwuD1vf6d7%2B%2BctZkX1ft4OXL1qxN1GVjOngPugzznMvhqvM/ot/sWtKE73owycmz6raajJXIMeobsXRqm9qf0uEWc5T7qaEHf9tbmT32KYJRVNd1l9uSdIKs4RUeayXcQ6qk3jyaNrq8G/DGB1AGz0pXjrmipQW9dj%2Bi9UUiPpUMtCxY0TZPlXLYYHDtDIJV%2B50hIqeng1ALG2sl/EPKnYoUQmgj4rdVSkzeIp34DgR3jeT7LUunbmA14lrCacb6Klk4W3Olf7dkunUgoi6LonpiuVNdl6mcta7PFbmSK0kuRV50VpgqKYrUAZfbknRiUVvfTc2ddufAxro2xPCbPDsRYPQDZBhX4tGfvqG%2BpksA%2BoETnqYfivblOMvBQnpfgx1wvbTjFajj7DvbJgInAwLUZevM4qmsy2q5jddBl7UQgYTAlqQTDu4aQNR7Il97wiwBhg8lyOMFnY3Acos3aXu/yzUDPHAtX4po7%2BzapsWVaCLi/syGv%2BqmHWNjROAUQIC6bL1Jpi5bD0vWRASyCGxJOjXyW1MgIN%2BlfZ98yylS30kQpS8tsC7WUh/1jGetenraZFkiQAQOHwHqssOfQ46ACJwyCGxJOk8ZUDlQIkAEiAARIAJEgAgQgaMIkHRSIogAESACRIAIEAEiQASmI0DSOR1iNkAEiAARIAJEgAgQASJA0kkZIAJEgAgQASJABIgAEZiOAEnndIjZABEgAkSACBABIkAEiABJJ2WACBABIkAEiAARIAJEYDoCJJ3TIWYDRIAIEAEiQASIABEgAiSdlAEiQASIABEgAkSACBCB6QiQdE6HmA0QASJABIgAESACRIAIkHRSBogAESACRIAIEAEiQASmI0DSOR1iNkAEiAARIAJEgAgQASJA0kkZIAJEgAgQASJABIgAEZiOAEnndIjZABEgAkSACBABIkAEiABJJ2WACBABIkAEiAARIAJEYDoC/wODacmbmkpjsQAAAABJRU5ErkJggg==" data-latex="y=f(x)在{x}_{0}处左、右极限存在是f(x)在{x}_{0}处连续的\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ ">
A:充分条件
B:必要条件
C:充要条件
D:前三者均不是
在区间(a,b)内,如果<img class="kfformula" src="%2BWoSKbEm1m13KtVsQgsp3NIiEBNEpVIiaflvyJDObyc3cO2f%2B987/njv33EZe771nzpznNzPnzMy7AnssAgojsKLQJ3PJIgAD0yBQGQEDU6Us5pSBaQyojICBqVIWc8rANAZURsDAVCmLOWVgGgMqI2BgqpTFnDIwjQGVETAwVcpiTk0FzB%2BAnVJFcK02LlMA8yCA2x1gbgewB8DFnvPMJQBPAbzuaWdZn1cdlymAeRPARwCXI4oTynMAfh2ABm/rj4nAWXVcpgDmnwDOtoBHcR4DuDMAmDTBWWgfgCMD2Stppuq4aALzbwCrAXwH8LVlhgyFPu4gGmK2DO3ec7D/W5KqgrariIsWMJnfcbZaD4Bg7BcUO3zv7oCzpWeFfhwYKD0oyF%2Br6SriogVMVpfXAJwC8BnAhwQYzAevO5BLiE8fjk0k1wz7X01cNIDpq8szAK4IKTsNYFPBXJC56/sMf4RuF3%2BtmrhoAJPL%2BAWXLz4RSlcanNICC7uZ/Vo1cdEApjSnDFV665b%2BUgUKC4iTALZkozHuB9XERQOYDCafHAgkJx7Mt4462%2BsAPHJLM2fDNQA2A3jRUf1L2iiFod%2B2ov3/3E4FN/9TBwkSnycRl7HA3AvgN6cqAeHzzv37l6DSlgjAmdhvlrM97ncyj/0EgCnDMwC7Oqp/SRslwGRawxk7LL748z%2BusS7NJD5PIi5jgRluzfC4kceJsZOdNuFTAnBP9IED0NvgN7eCgomV95uOAqqtDc5mBHyR52Gin5zNOTAPRQYn/bmf2K0YMy6LxKP1m7HB5OzA4icmRFdHJQJw66k5AHLaSbUxqBAAuMS%2BaoHP/y41gFM%2Bc8BOIi5jg8kq8rBgM70JQUqA5vu%2B8s/pb24bfUH1Psa2zbpm0rDdXJ/VxiVHqL6Bj32/SOFDO7kb4Mwn%2BewWdoIz1O%2BZBZnQdOtrjAXz7Zgm0gFcTVzGBrOZ90nFJWjMTaXbRWwntQyGbbPY4LIvBVnqdyo9YQEY252g/88F/lQTlzHB9Cc%2BOcB4YZkr8bKH5A6mr2h5ayjcwG/mWyE0XOJ4oSTMx8J8tUTxEx7Lhr74HQUWh6n%2BjhmXIQbn/zbGBHPRwofOd1204LK3NThHjy2DFHtbh9ClLkJ0icdlmLNiczB4/08IVohq4jImmNK8qU1MCsnbSLHCyC%2BJzBV3uMrfz5iSy8VttgedFRrG/P5l2CdfnPBVqVZVxEXa2RKCLFr4hMt57N4mBd7pNuy/uFmGVe0vAPgznxsdN4f4/dqWZbxEHEKb4Z1U/j9PpphLt%2BWeMX9oY/JxGRPMtpxKKn6pypkD5rySK28%2BD/dXAiWxqSIuY4HpA56z4R0TxZ97p4oCiaB8h0vnN0XX3XLyy7CPk4/LMsFkQbHR5YUEgOfUORc32uDi0sUlr%2B/f/XCwMAWIVeJSsBd9r1mw0Y6vxpl%2BxHLpVFuTjssywQz34pigc5brC1OYb/YFqmv7KAVB3983z8EJ5VVntM9N%2BiH6NISN7PgsE0xfVHB/8KWi5TI7aAU%2B8LGh6VUANrg/L%2Bkq0gq4ocfkMsHU02vzRH0EDEz1Es3TQQNznrqr77WBqV6ieTpoYM5Td/W9NjDVSzRPBw3MeequvtcGpnqJ5umggTlP3dX32sBUL9E8HfwJoHFBQMBkVwcAAAAASUVORK5CYII=" data-latex="{f}^{'}(x)={g}^{'}(x)">则一定有_________
A:f(x)=g(x)
B:f(x)=g(x)+c
C:<img class="kfformula" src="" data-latex="{[\int {f(x)dx}]}^{'}={[\int {g(x)dx}]}^{'}">
D:<img class="kfformula" src="" data-latex="\int {f(x)dx=\int {g(x)dx}}">
f(x)是定义在(-l,l)之间的任意函数,则G(x)=f(x)+f(-x)定是偶函数。
A:错误
B:正确
若<img class="kfformula" src="" data-latex="{x}_{0}">为f(x)的拐点,则必定有<img class="kfformula" src="" data-latex="{f}^{''}({x}_{0})=0">
A:错误
B:正确
有限个无穷小量的乘积是无穷小量 ( )
A:错误
B:正确
若<img class="kfformula" src="" data-latex="f(x)\geq g(x)">,则<img class="kfformula" src="" data-latex="{f}^{'}(x)\geq {g}^{'}(x)">
A:错误
B:正确
<img class="kfformula" src="" data-latex="f(x)=\frac {1} {{x}^{2}-1}">的间断点只有x=1
A:错误
B:正确
<img class="kfformula" src="" data-latex="d\int {f(x)dx=f(x)dx}">
A:错误
B:正确
若一个函数在某点的左右极限存在,则函数在该点一定连续
A:错误
B:正确
<img class="kfformula" src="" data-latex="y=\frac {x} {{x}^{2}+1}的极大值点是x=1"> ( )
A:错误
B:正确
如果f(x)为偶函数,且<img class="kfformula" src="" data-latex="{f}^{'}(0)">存在,则<img class="kfformula" src="" data-latex="{f}^{'}(0)">不一定等于0
A:错误
B:正确
f(x)=1,g(x)=x/x是相同的函数 ( )
A:错误
B:正确
|
|